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1. An analysis of the transport system 
 
Transport arises as a consequence of the spatial division between economic and social 
activities.  The aim of this chapter is to describe the interaction between the total of social 
and economic activities and the transport system.  The conceptual model that ensues serves 
as a framework in which the other subjects to be discussed in this course can be placed in 
their correct context.  The description is based on Manheim [1979]1§.  The chapter closes 
with some remarks about the role of modelling in traffic planning. 

1.1 Social change 
Society undergoes constant change.  Due to the strong interactions between the transport 
sector and society (traffic largely derives from social life and its associated pattern of 
activities) changes in the social sphere can have important consequences for the functioning 
of the transport system. 

Basically, there are three separate types of changes that affect the functioning of the 
transport system. 

• Changes in the demand for transport.  Population increase, increased incomes and 
changes in land-use affect the demand for transport. 

• Changes in transport technology.  Technological innovation is not confined to the 
different means of transport only.  Innovation also occurs in the form of new transport 
concepts such as special lanes for target groups, information systems for the travelling 
public, road pricing, etc. 

• Changes in value judgements.  Decisions in the transport sphere can have far-reaching 
implications.  Today there is a greater appreciation of the social consequences of 
particular measures and of the environmental impact inherent in traffic. 

We will begin our analysis with a systematic description of the transport system and of its 
interaction with its socio-economic environment.  Next, we will identify the options that are 
available to influence the direction of development and to determine the effects of these 
steering measures. 

The basic assumptions of the analysis are as follows: 

• The transport system in an area is seen as a coherent multi-modal system.  The term 
multi-modal means that a number of forms of transport or "modalities" are included in 
the equation.  The term transport system refers to the totality of transportation modes, 
networks, terminals, transportation services, etc.   

• Because of the large number of interactions, the transport system can only be looked at  
in conjunction with the social, economic and political pattern of a given area.  From this 
point, we will call this framework of social, economic and political activities the activity 
system. 

                                                 
§ Notes refer to the list of references at the end of the text. 
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1.2 Interaction between the transport system and the activity system 
Figure 1-1 shows the interaction between the transport system T and the activity system A. 
The interaction between these systems results in a flow pattern F in the multi-modal 
network.  By the flow pattern F we mean the totality of transportation flows in terms of 
origin, destination, transportation modes, routes, departure times, volumes, etc. and the 
associated level of service of the traffic system, for example in terms of travel times.  In fact, 
the F variable describes the situation of the transport system at a particular moment in time.   

 

The following relationships are indicated in Figure 1-1: 

Relationship 1: A given transport system and a given activity system will result in a given flow 
pattern on the multi-modal transport network. 

Relationship 2: The use of the multi-modal network, as well as the associated level of service 
in the traffic system and the consequent use of scarce resources will lead to alterations in the 
activity system. 

Relationship 3: The use of the multi-modal network, and the traffic pattern associated with it, 
will lead institutions and operators to alter the quality of their services and their infrastructure.    

Flow
pattern

F

Transport
system

T

Activity
system

    A

 
Figure 1-1  Interaction between transport system and activity system.1 
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1.2.1 Transportation Options 
 
There are many ways of intervention both in the transport system and in the activity system.  
It is important to realise that different groups can make different decisions.  These include, 
for example, individual customers of transport services, travel operators that offer travel 
services, and institutions that formulate and execute transport policy.  The opportunities for 
intervention, the options, can be formulated both for the transport system and for the activity 
system. 

As for the transport system, options for the following aspects are available: 

• Technology.  Examples here are the introduction of new transportation concepts such 
as containers, the development of new propulsion techniques and innovations in the area 
of road construction. 

• Networks.  Networks are defined by a set of nodes and a set of links that connect the 
nodes.  One can choose between all kinds of network configurations such as radial, 
concentric or grid patterns.  In addition, the properties of networks can be changed.  
These properties, such as capacity and speed limits are often attributed to the network 
links. 

• Vehicles.  The number of vehicles to be used and their properties can be influenced.  
Such decisions can be taken by managers of transportation companies, but also by 
policy makers through legislation. 

• System operating policies.  Regulation can be done through price intervention, 
subsidies, or other fiscal measures.  Regulation can also be done through the legislature.  
Also included are operational decisions in respect of scheduling, types of service to be 
offered, and routing. 

• Organisational policies.  The structural organisation of the transport system has its 
repercussions on the transport system.  Here one can think of the distribution of 
responsibilities between the various institutions or of the internal organisation inside 
transportation enterprises. 

 

In the activity system, the options can also be divided into a number of categories: 

• Travel options.  This concerns the options available to every potential user of the 
transportation system, i.e. the choice whether or not to travel, the choice of transport 
mode, the time of travel and the route. The combined result of all these choices 
constitutes the demand for transport. 

• Spatial dispersion of population and economic activities.  Economic and social 
factors determine the location of residence and the place of work as well as the scale of 
the economic activity.  They also influence the need for transport.  This applies, on the 
one hand, to factors that can be actively directed through the implementation of 
government policy.  And on the other hand it applies to processes which are free from 
outside intervention.  In both cases, however, we speak of options in the activity system.   
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1.2.2 Consequences or impacts of transportation 
The consequences or impacts of the measures to be taken are manifold.  Furthermore, the 
consequences may turn out to be positive for one group and negative for another.  This 
aspect must be born in mind during the evaluation process.  A possible subdivision of the 
consequences may be as follows: 

• User impacts.  These apply to the individual traveller and those in the goods 
transporting business.  The load on the transport system is experienced by the user in 
terms of travel times, costs, comfort, etc. 

• Transport operator impacts.  These concern the consequences for the operators of 
public transport companies, etc.  Here, costs and returns are important factors.    

• Environmental impacts.  Impacts on the environment, such as air pollution, noise 
pollution and fragmentation of the landscape have gained in influence on the design of the 
transportation system 

• Functional impacts.  These are the implications for the functional quality of the activity 
system.  One can think of changing incomes in retail outlets and in land prices. 

• Governmental impacts.  The impacts of the transport system can lead to administrative 
consequences in the area of legislature, in the allocation of responsibilities, etc. 

1.2.3 The prediction problem. 
We must now find a way to predict the consequences of a variety of available interventions 
or options.  It is important that the implications are optimally estimated or calculated in order 
to guarantee maximum certainty in the solution to a problem that has been identified, or to 
realise a formulated target.  This problem of prognosis has been schematised in Figure 1-2. 
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To calculate the effects of interventions on the transport system, we need to predict the flow 
pattern F for a given transport system T and a given activity system A. 

 

1.3 Demand and supply on the transport market 
The starting point in the prognosis is that a market can be identified for the transport sector 
that functions independently of other markets.  The following variables and functions are 
important in describing the functioning of this transportation market: 

Variables: 
T the transport system 
A the activity system 
F the flow pattern 
S the level of service (travel times, fares, etc.) 
V the volume of the traffic flows  
 
Functions: 
J supply function:  S = J(V,T) 
D demand function:  V = D(S,A) 
 
A supply function (see Figure 1-3a) gives the level of service as a function of the volume of 
the traffic flows in any given transport system.  In economic terms, a supply function 
indicates the behaviour of the supplier of producer.  In our case, the supply function 
indicates the service that a given transport system can offer at different rates of traffic flow.  
This is why the supply function is sometimes called a service function.  The level of service 

 Options

 Technology

 Networks

 Vehicles

 Operation

 Organisation

 -----------------

 Travel
  options

 Spatial
  dispersion

Prediction model

 Impacts

 User

 Operator

 Environmental

 Functional

 Governmental

 

Figure 1-2  The prediction problem.1 
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incorporates a number of elements. Amongst these, the travel time and the costs of travel 
are important elements.  Changes in the transportation system change the shape of the 
supply function. 

A demand function (see Figure 1-3b)describes the size of the transport flows as a function 
of the level of service in a given activity system.  The function is read starting from the 
vertical axis.  As the level of service rises, so the demand rises.  Changes in the activity 
system lead to changes in the demand function. 

 

The flow pattern F of the multi-modal network is defined as the combination of the 
transportation flows V  with their associated level of service S.  The load pattern F° = (V°, 
S°) for a given transportation system and a given activity system can be calculated on the 
basis of the equilibrium that emerges between demand and supply, as indicated in Figure 
1-3c. 

 

In addition to the general case as shown in the previous figure, Figure 1-4 shows two other 
functional relations. 

 
Figure 1-3  Equilibrium on the transport market.1 
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Do note that the vertical axis now shows the travel time, not the level of service. The travel 
time is taken here as a measure of the service level.  This leads to a reversal of the vertical 
axis. 

The first example, Figure 1-4a, concerns a constant supply function.  This could apply to a 
road of infinite capacity, for example. Travel time does not alter as a result of a change in 
traffic volume. 

The second case, Figure 1-4b, shows a constant demand function.  The demand is not 
responsive to changes in the level of service. This could apply to passengers, for example of 
public transport, who have no alternative transport options. These are sometimes called 
forced travellers or "captives".  

1.4 Consequences of the introduction of new transportation facilities 
When the flow pattern indicates congestion at certain points, government institutions can, for 
example, decide to provide new infrastructure.  Public transport companies can also decide 
to adapt their services.  This feedback from the flow pattern to the transportation system 
was indicated by relationship 3 in Figure 1-1. 

So what happens when the transportation system is altered?  Let’s assume that the new 
transportation system is an improvement on the old one.  Figure 1-5 shows the supply 
function for both the old system (J°) and the new system (J¹). 

Again, as in Figure 1-4, the vertical axis shows the travel time!  An increase in the time spent 
travelling means a lower level of service. 

If we were to introduce a new improved transportation system immediately, this would lead 
to a reduction in travel time.  A new equilibrium will occur in which the reduced travel time 
will entice more consumers to avail of the service.  The equilibrium is achieved with the 
values V¹ and t¹.   

We must, however, keep in mind, that the time-lapse between a possible identification of 
insufficient capacity and the planning and bringing on steam of additional capacity will take 
many years.  In other words, by the time the new service is eventually introduced, the 
economic and demographic developments, such as population increase, increased car-
ownership and so on, have led to an altered demand function from D° to D². 

 

Figure 1-4  Constant supply and demand function.1 
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The new equilibrium F² will be achieved several weeks or months after the introduction of 
the new service.  This time-lapse is a function of the adjustment required by people to 
familiarise themselves with the changed departure times, routes or transport modes.  We call 
this equilibrium that was indicated by relationship 1 in Figure 1-1 the short-run equilibrium.  
It emerges through changes in travel behaviour. 

The improved quality of the transport system, moreover, induces another development.  
Firms will appear in areas that have become more accessible, people on higher incomes will 
move out of town to settle in easily accessible rural areas, etc.   In short, reacting to and 
sometimes even anticipating changes in the quality of the infrastructure, relocation of 
activities and possible new developments can occur.  Due to the improved transport system, 
people will choose to live at a greater distance from their workplace and new customers are 
likely to come forward to use the improved transport system.  This will, in its turn, give rise 
to an increase in the demand function.  The demand  function will shift to a higher level.  This 
process is called “activity shift” and is shown in relationship 2 of Figure 1-1.  This 
development is a slow one and so the demand function D³  of the new situation in the activity 
system will only be realised in the long term.  The equilibrium F³ , which is a consequence of 
alterations in the activity system, is called the long-run equilibrium.  This equilibrium will 
usually not be achieved because new services will in the meantime have been introduced 
which will incline the system towards a new equilibrium.  The long-run equilibrium, therefore, 
may serve to indicate trends in development.  

Note, in Figure 1-5, that the travel time t³  in the final situation is higher than the original 
travel time t° with which we began our analysis.  The level of service has, therefore, gone 
down, in spite of the provision of new infrastructure!  Thus there is a possibility that the 

 
Figure 1-5  Equilibrium in the short and long run.1 
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implications of the introduction of a new service on the demand pattern are such as to 
eventually reduce the quality of the traffic system in the new situation.   

If, as explained above, the quality of the transport system has decreased in spite of the 
introduction of new traffic facilities, it would not be correct to conclude that the provision of 
this new facilities was pointless.  After all, the volume of traffic in the new situation is also 
much larger.  Circumstances determine whether we can speak of a favourable or 
unfavourable development.  Remember that the increased demand is the result of a shift in 
the activity system.  This can, on the one hand, imply that the same number of users travel 
longer distances.  Or it can mean that the distance travelled per user shows a nominal 
increase only, but that the number of users has increased.  A combination of the two is, 
naturally, also possible.  If the increased demand was mainly a function of an increase in 
distance travelled by users, one could speak of an unfavourable effect.  Where the provision 
of the new transport service leads to mobility for more users, one could - with some 
reservation - see this as a positive result. 

We refer the reader to chapter 5.3.1 for additional observations regarding the consequences 
of changes in the transport system.   

1.5 Model types 
Based on the analysis above concerning the mechanisms of equilibrium that apply to the 
transport market, a list model types can be drawn up that are required to calculate the 
consequences of policy measures.  These concern the following models: 

• Demand models that determine the scale of demand as a function of the service level. 

• Supply models that, depending on the measures to be taken, determine the level of 
service as a function of load on the network. 

• Short-run equilibrium models that, on the basis of demand and supply, determine the 
scale of the traffic flows in a network. 

• Long-run equilibrium models that describe the interactions between changes in the 
infrastructure and the spatial distribution of activities. 

• Impact models that indicate which implicit consequences are involved in the provision 
of improved service levels, such as the necessary investments, environmental impacts, 
social effects, safety, etc. 

We need models that belong to the five types described above, to solve our problem of 
prognosis, which was schematically presented in Figure 1-2. 

Figure 1-6 shows the aforementioned model types in their mutual context. 
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1.6 Practical implementations of the conceptual model 
The conceptual model presented in this chapter can be used to place the multitude of 
complex transport phenomena that we encounter on a daily basis, in their appropriate 
context.  The model provides an insight in the fundamental interactions between the transport 
system and the socio-economic system in which it is embedded.  The model is still too 
abstract, however, to serve as a basis for making transport calculations. 

In chapter 2, we will discuss the traditional traffic demand model.  This model is used in 
many places around the world to make real transport calculations.  The traditional traffic 
demand model consists of a number of sub-models, which we can see as practical 
implementations of the conceptual model discussed in this chapter. 

Below is an overview of the 5 types of model described above and their parallel in the 
traditional traffic demand model. 

• Demand models appear in the traditional traffic demand model in a number of sub-
models, namely the production/attraction model, the distribution model, and the 
mode choice model. 

• Supply models are reflected in the so-called time-loss functions, which indicate the 
relation between travel time or travel costs and the flow rate on road sections.  

• Short-run equilibrium models are used in the so-called assignment models, which 
determine the routes in a network, by taking into account that traffic flows themselves 
influence the travel times on links in the network. 

• Long-run equilibrium models, which reflect the influence of the flow pattern on the 
activity system, are often implemented in the form of a scenario-approach.  Here one 
postulates a certain plausible future socio-economic development that is used to 
calculate the consequences for the transport system.  Then there are models that try to 
directly predict the effect of the flow pattern on the spatial and socio-economic 

 Options

 Technology
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 Vehicles
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 Impact-
   model
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Figure 1-6  Model types needed for prognosis 
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development.  However, in practice these models are, as yet, little used.  We will not 
discuss such long-run equilibrium models in this course. 

• Impact models have been developed in large numbers.  There are models that can 
calculate the impact of traffic on air pollution, noise pollution and safety.  Because these 
models are very specialised, they will not be discussed in this general introductory 
course. 

 

1.7 Models in the planning process 
Figure 1-7 indicates where in the planning process, the prediction model can be applied.  
(Models can also be used in other phases of the planning process.  Because they are not 
discussed in this chapter, these models are not shown in the figure.) 

Problem

Objectives

Generating options

Prediction

Evaluation

Choice

Realisation

Criteria

Prediction model

 
Figure 1-7  Planning process. 

 
 
There are some important reasons why models are used: 

• A model, especially if it is in the form of a computer programme, enables one to include 
complex interactions that could easily be overlooked without the use of models or that 
could be incorrectly interpreted.  A model does not always have to come in the form of 
a computer application, but it lends itself very well to the purpose. 

• When one compares them to the implementation costs, model calculations are a very 
cost-effective means by which to give answers to the consequences of various 
alternative options.  However, one must keep the limitations of models in mind.  Using a 
model means that concessions are made in regard to the reproduction of reality.  
Models are a simplified reproduction of a part of reality.  If this was not so, we might as 
well take reality itself as our model. 
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We conclude this chapter with some important criteria needed to assess the prognosis 
models: 

• Relevance.  The model must be able to calculate the impact of every single measure of 
intervention that one wants to investigate. 

• Accuracy. The results of the model and the observations must agree to a reasonable 
extent.  Note that it is unrealistic to expect great accuracy in traffic models, when 
compared to models in the exact sciences.  Traffic engineering is no exact science, but a 
field of knowledge that lies between the exact and the social sciences. 

• Theoretical foundation.  The formulation of the model should, ideally, be based on a 
solid theoretical foundation.  Those models that depend on a simple extrapolation of 
observed behaviour have only a limited field of application, both in place and time. 

• Simplicity.  The simplicity of a model should be seen as its mark of quality.  Generally, 
simple models are also more robust, i.e. they are more resistant to input errors than 
complex models. 

• Validation. Matching the model results with the observations is called the calibration or 
the empirical fitting of a model.  Validating a model, however, means testing the model’s 
capability to make predictions.  Here one must not use data that have been used in the 
calibration.  Every model should be properly validated. 

• Practical applicability.  One must be able to apply the model in the framework drawn 
up in regard to available time, funds, and personnel.  This relates particularly to the 
gathering of input data required for the model. 

1.8 Summary 
Transport evolves primarily through the spatial separation of economic and social activities.  
The combined social and economic activities, including the political and other consultative- 
and decision-making structures, is called the activity system.  The activity system represents 
the demand side in the realisation of transport.  The totality of transportation services is 
called the transport system and this represents the supply side.  Demand and supply result in 
an equilibrium, the flow pattern.  The flow pattern is expressed in a particular volume of 
transport with attendant attributes such as travel times, levels of congestion, etc. 

The equilibrium is dynamic, not static, in that a certain volume of transport can, in its  turn, 
trigger changes in the activity- and the transport systems, resulting in a new equilibrium.  This 
process is one of perpetual change. 
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2 Structure of the traditional traffic demand model. 
 
In this chapter we give an introduction to the traditional traffic demand model.  This model 
can be seen as an elaboration of the conceptual model described in chapter 1.  The model is 
called the traditional traffic demand model because years of research and application have 
led to a commonly accepted model structure.  This structure evolved in the sixties and 
remained more or less the same in spite of enormous progress in  modelling techniques. 
 
The development of traffic demand models began in the fifties in the United States, where 
elaborate models were built amongst others for the cities of Detroit and Chicago.  In the 
sixties, traffic models began to be used in England.  From England it spread to the rest of 
Europe. The widespread use of traffic modelling in Flanders began relatively late (in the early 
nineties).  Today, every province has its own multi-modal traffic model. 
 
There is an extensive library of literature on the topic.  One of the best references is Ortúzar 
and Willumsen (1995)2. 
 
We begin the treatment of the structure of the traditional traffic demand model with a short 
exposition of the function of this model and a discussion of some of the terms used in 
common model theory. 
 

2.1 Function of the traffic demand model 
Both the activity- and the transport system are subject to constant change.  These changes 
either occur autonomously, or they are planned.  By autonomous developments we mean 
societal changes outside of our sphere of influence.  Examples include technological 
developments, changes in incomes structures, changing attitudes towards work and leisure 
time, etc.  Developments can also result from deliberately planned intervention.  Examples 
here include the construction of new infrastructure, measures to stimulate alternative means 
of transport, for example through pricing mechanisms, the pursuit of particular planning 
goals, etc. 
 
The function of the traffic demand model that will be presented in this chapter is to calculate 
the equilibrium that results from a given situation in the activity- and the transport system 
(short-run).  The calculated traffic flows can be used to design traffic facilities.  Very 
important also are the external effects of traffic flow.  Here, one must mainly think in terms of 
negative effects such as environmental degradation, loss of time and money, and congestion-
induced irritation. 
 
In chapter 1 we showed that the traffic flows influence the activity system and the transport 
system.  The effects are largely long-term, and include such processes as the relocation of 
work and living areas and the adaptation of current infrastructure or the construction of new 
infrastructure.   Current traffic models are not quite up to handling such feedback.  Possible 
quantitative models that could adequately describe this complicated process are still in the 
development phase. 
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Below are a number of questions on traffic flows that can be explained using travel demand 
models: 
 
• How does the transport pattern in an area change following the construction of a new 

motorway? 
• What are the consequences of locating employment to the outskirts of a city? 
• Which are the optimum locations for work- and urban areas to be assigned in a region? 
 
These questions give an idea of the scale level to which traffic models tend to be applied.  
The traffic models that are dealt with in this chapter work at the level of an urban area or a 
region such as a province or county.   They definitely do not deal with the description of the 
traffic pattern on a single road or junction. 
 

2.2 Model concept 
A model is a simplified representation of a part of reality. 
 
Models can be classified according to their way of representation.  The representation can 
be concrete or physical, as in scale models.  Abstract models belong to a totally different 
class.  There are many kinds of abstract models.  The kind of model that interests us in this 
chapter is the mathematical model.  The traffic model is a mathematical model. We will 
return to the common structure of a mathematical model later. 
 
We can also classify models according to their end-use.  Here, we distinguish between 
descriptive, predictive and normative models.  Descriptive models are confined to the 
schematic representation of a phenomenon.  They do not aim to explain this  phenomenon.  
A predictive model, or a prognosis model, has a greater reach.  Starting from the current 
state of a phenomenon, and having knowledge of probable future influences, it is used to 
predict the future situation.  One can follow a simple trajectory, for example, by 
extrapolating trends.  Or one can try to reach a deeper understanding of the relevant 
phenomenon by developing a theory.  In the last case one speaks of a causal model.  The 
classic traffic demand model that we will discuss later on is an example of a causal prognosis 
model.  Then there are normative models.  Here one decides on a particular norm or 
objective, namely a goal function, or an objective function that needs to be optimised.  Next, 
one attempts to determine which conditions need to be met in order to achieve the optimal 
situation. Normative models also come under the name of prescriptive or optimisation 
models. 
 
There are still more possible classifications.  We can, for example, classify models according 
to the role that time plays in the description of phenomena.  When the flows in a traffic 
model are time-dependant, we speak of a dynamic model.  If we assume that the flows are 
constant over a specific period of time, we have a static model.  Lastly, we mention the 
classification that looks at the role of chance played in the model. There are many models 
that use chance or stochastic variables.  These are so-called stochastic models.  Stochastic 
variables are not used in deterministic models. 
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In conclusion, we can state that the traditional traffic demand model that we are to discuss is 
an abstract, mathematical model.  It is a static, largely causal predictive model, that features 
both deterministic and stochastic sub-models.  The trend over the last few years has been to 
develop dynamic traffic models.   
 

2.2.1 Mathematical models 
Mathematical models, including those in the area of traffic engineering, comprise systems of 
mathematical equations where the behaviour of the variable Y is deduced from a number of 
variables Xi. 

 
Y f X ai j= ( , )  
Where: 

Y Dependent (or the to be explained) variable 
Xi Independent (or explanatory) variables 
aj Parameters 
 

 

Figure 2-1 shows that a specific procedure is followed in the construction of a mathematical 
model.  The process of observation and thought about a phenomenon in the area of a traffic 
engineering, leads to the formulation of a theory.  This theory is reflected in a mathematical 
specification of the model.  

 

Develop theory

Mathemat. specification

Calibration

Predict new data

Validation

Data

New data

Phenomena

Applicable
model

ok

not
ok

 

Figure 2-1  Construction of a mathematical model 
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The model-specifications include: 

• A determination of the functional form of the equations 

• A specification of the independent variables 

A possible functional form for a theoretical model could be a linear additive form such as: 

Y a X a X= + +1 1 2 2 ....  
 
Or a multiplicative form such as: 

Y aX X= 1 2 ... 
 

2.2.2 Calibration and validation 
In addition to the independent variables X , the specified mathematical model shows a 
number of parameters a .  Calibrating the model means that we determine the values for the 
parameters in order to ensure maximum agreement between the values calculated through 
the model and the original observations.  The observations for a traffic model from 
questionnaires and traffic counts apply to a specific point in time that we use as a point of 
reference. One usually says that the model is calibrated for a specific baseline year.  Other 
terms used for calibration are: the ‘estimation’ of a model and the ‘fitting’ of a model. 

Even when a model had been calibrated it still does not mean that the model can be used to 
make predictions. When there are a sufficiently large number of parameters, it is, in 
principle, possible to correctly fit practically every model.   Validating a model means that 
the model predictions are compared with new observations.  These observations may not 
already have been used in the calibration!   It is possible, for example, to validate a 
model by using it to ‘predict’ a situation from the past and to compare this with the actual 
situation in the present.  (“back casting”). 

A validated model, lastly, can be used to make a prognosis for a specific target year.  This 
does require some caution.  Traffic models are based on an analysis of observed travel 
behaviour.  They are, therefore, only valid for circumstances that do not deviate too much 
from the circumstances that form the basis of the analysis.  The accuracy of the predictions, 
moreover, will decrease as the target year lies further in the future.  This is so because the 
models do not take account of possible gradual changes in traffic behaviour. 

2.3 Structure traffic demand model 
The scale at which traffic services are used, such as the volume of traffic on a road and the 
number of train passengers on a given route, arises from a number of choices that are made 
by individual transportation consumers.  
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The choices faced by the individual include: 

• The choice whether or not to travel 
• The choice of the time of departure 
• The choice of destination 
• The choice of transport mode. 
• The choice of route. 
 
The list above suggests that the choice process consists of a number of separate choices and 
that the choices occur in a definite order.  This will usually not be the case.  Some choices 
will be made simultaneously, i.e. all at once and directly inter-linked, and not in a particular 
order. 

In order to make the problem mathematically tractable, we generally assume that the choices 
can be modelled separately. As for the sequence of the models, the mutual relationship 
between choice of destination, choice of transport mode and choice of departure-time 
causes a problem.  Because of the interwoven nature of these choices, it is best to group 
them in one model segment. 

Departure time modelling is implicitly incorporated in the first sub-model (the production- 
and attraction model).  This sub-model calculates the number of journeys undertaken for a 
specific period, for example the morning peak period. 

The sub-models need input data.  The traffic pattern is the result of a large number of 
individual choices.  But we cannot model every individual choice.  Combination or 
aggregation is unavoidable if we want to achieve a workable model.  The study area is, 
therefore, divided into a number of zones.  The aim is to distinguish zones that are socially 
and economically homogenous.  Inside a zone, trips are grouped with respect to trip-
purposes and person-types. In addition the area is provided with schematised networks for 
homogenous transport modes. 

 
 
The following sub-models are used (see Figure 2-2) 

• Production/attraction model.  A production model describes the number of journeys 
that are generated in a zone as a function of a number of personal characteristics and 
characteristic features of the environment.  The total number of journeys produced per 
zone is calculated, without reference, as yet, to the destinations of these trips.  The trips 
are specified as to point of time (e.g. peak or off-peak).  A zone can both generate trips 
and attract them. An attraction model describes the total number of trips that a zone 
attracts independent of the origin, as a function of characteristics such as employment 
rate and retail area.  The productions and attractions that have been calculated are also 
called trip-ends.  Taken over a sufficiently long period of time, the total number of 
departures that are calculated over the combined zones must equal the total of arrivals.  
To this end, the results of the production- and attraction models are adjusted, if 
necessary.  This is called balancing of productions and attractions.  
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• Distribution/Mode choice model 
 

Distribution model.  In the distribution model the trips originating in a certain  
zone i, that have been calculated in the production model, are distributed over possible 
destinations j.  The trips that have been calculated in the attraction model with zone j as 
their destination, are distributed over the possible points of origin i.  The connection 
between points of origin and destination is calculated as a function of the ease or 
resistance with which the distance between i and j can be bridged.  Depending on 
whether one distinguishes several trip purposes or person-types, the calculations in this 
sub model can deliver one or several origin-destination tables.  In an origin-destination 
table (OD-table) the rows of the table represent the origins and the columns represent 
the destinations.  The entries in the table represent the trips between a certain origin and 
a destination. 

Mode choice model.  A mode choice model calculates which type of transport 
travellers use as a function of personal characteristics and the relevant transport modes.  
The calculated distribution amongst the various transport modes is called the “modal 
split”.   The calculation results in a further subdivision of OD-tables according to traffic 
mode. 

• Traffic assignment model.  Even for a single mode of travel,  there often are several 
possible routes between an origin and a destination.  In a traffic assignment model (also 
called a route choice model) the trips between the origins and destinations specified in 
the OD-tables are assigned to the possible routes in the network according to 

Production/attraction

Trip-ends

Distribution/Transport mode

OD-tables

Assignment

Flows

Trip
impedances

from network data

Zone data

 
Figure 2-2  Structure of the traditional traffic demand model 
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characteristic of these routes (distance for example).  The assignment is done for each 
traffic mode separately, and results in the traffic flows  on the links of the various 
networks.  The calculated traffic flows imply certain definite journey duration times.  In 
order to ensure overall consistency of the variables in the model, the travel duration 
times are compared with those used in the distribution/mode choice model, and if 
necessary an iteration step is added. 

 

2.4 Overview 
The discussion of the structure of the traffic demand model in this chapter highlights the 
significance of the  “choice” concept.  The observed traffic pattern is the outcome of the 
choice behaviour of a large number of individuals. A general theory of individual choice 
behaviour is needed.  One theory that can explain many transport phenomena is the so-
called discrete choice theory.  We will, therefore, precede our detailed discussion of the 
traffic demand model in later chapters by a discussion of this theory.  

Before a traffic model can be applied, we need data concerning the study area and 
concerning the networks that will be used for the trips.  We will examine this subject in a 
separate chapter. 

The last four chapters will then look at the production/attraction model, the distribution 
model, the mode choice model and the traffic assignment model.   
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3 Discrete choice theory 
 
The discrete choice theory that will be discussed in this chapter is a general theory 
applicable in situations where people are expected to choose between mutually exclusive 
alternatives.  The discrete choice theory, which originates in the sciences of psychology and 
economy, appeared to be most suitable to the modelling of choice situations in traffic 
engineering.  The standard reference in this area is the book by Ben Akiva and Lerman 
(1985)3 . 

The basic principle of this theory is that when an individual is confronted with a situation in 
which he has the choice between a number of mutually exclusive alternatives, he will attribute 
a certain valuation or utility to each alternative. This utility is a function of the characteristics 
of the alternatives and of the characteristics of the person making the choice.  The choice 
will fall on the alternative that shows the greatest utility.  The problem is that utilities are not 
immediately observable and measurable. What can be observed are the characteristics of 
the alternatives (as, for example, travel time and costs for a certain travel mode), that we 
consider to influence the utility that an individual assigns to an alternative. 

We can never be certain, however, that we have accounted for all the characteristics that 
influence the utility.  And even if we included all the characteristics, the individual will, for 
reasons that elude our observation, not always judge the alternatives in the same way.  This 
is why the utilities are modelled as chance variables.  The choice models that are formulated 
using the discrete choice theory, will, therefore, indicate the probability with which various 
alternatives will be chosen. 

The name given to the set of alternatives from which choices can be made is called the 
choice set.  Some choice sets are inherently continuous, which means that they contain an 
infinite number of elements.  Assume, for example, that one must decide on the amount of 
basic materials that are used in the manufacture of a particular product. This is a case of a 
continuous choice set.  However, in this chapter we are interested in discontinuous choice 
sets, i.e. sets which contain a number of finite discrete points only.  This explains the term 
‘discrete choice theory’. 

 

3.1 Logitmodel 
Imagine that an individual finds him self in a particular choice situation.  He has the choice of 
K alternatives.  We want to know which alternative he will choose.  Now, the discrete 
choice theory postulates that he will assign a certain quantified value to each alternative.  
This value is the called the "utility" of the alternative.  Having assigned a utility to each of the 
alternatives, he will chose the alternative with the highest utility.  

The utility of the alternative i for an individual is a function of the characteristics of the 
alternative and the individual characteristics of that person.  It can happen that individuals 
who are apparently in exactly identical choice situations arrive at  different choices.  This can 
be caused by a number of factors: 



 

 

21 

• Unobserved characteristics.  It is possible that we failed to take account of particular 
characteristics that are very important for the individual.  This failure can be due to 
ignorance, or through a lack of data. 

• Measurement errors.  Some characteristics can be subject to measurement errors.  If it 
is a matter of a choice between two routes, for example, it is possible that the travel 
times that have been estimated by the researcher differ from the actual experienced 
travel times. 

• Incorrect specification of the utility function.  The utility is a function of a number of 
characteristics.  We usually adopt a simple linear function of the characteristics. There 
are occasions, however, when the various characteristics need to be combined in a 
different way. 

 
The effect of the factors mentioned above is that the utility that we calculated for a particular 
person is an average which leaves room for variation.  To account for this situation, the utility 
of the alternative a is written as a stochastic variable Ua, which consists of a systematic 
(non-stochastic) component Va that represents the observed characteristics of alternative a, 
and a stochastic component ea (a so-called error term): 

U Va a a= + ε  

 
The error term ea  has a probability distribution with an expected value (mean) equal to  
zero.  This means that the utility Ua has a probability distribution with a mean value equal to 
the known, observed value Va. 

The probability Pr(a) of a randomly picked person choosing the alternative a is equal to the 
probability that the utility of alternative a is greater than the utilities of all the other 
alternatives: 

Pr( ) Pr( )a U U aa k= > ≠     voor alle k  

Example: 

Imagine a choice situation with two alternatives: 

 
U
U

1 1

2 2

3
2

= +
= +

ε
ε

 

 
The probability that the first alternative is chosen is as follows: 

Pr( ) Pr( ) Pr( ) Pr( )1 3 2 11 2 1 2 1 2= > = + > + = − > −U U ε ε ε ε  

 
Assume a uniform probability distribution for e¹ between -2 and +2 and that e² = 0. 

We then find that: 

Pr(1) = 0.75 en Pr(2) = 0.25. 

The example clearly shows that the probabilities of the various alternatives will depend on 
the probability distribution of the error terms.  The question arises what probability 
distribution we should adopt for the error terms. 
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One could adopt a so-called Multivariate Normal Distribution for the error terms.  A 
Multivariate Normal Distribution is a distribution where the variances may differ and where 
there may be mutual dependency between the probability distributions.  This is the most 
general case.  A model using the Multivariate Normal Distribution for the error terms is 
called a probit model.  The disadvantage of a probit model is that it is not possible to write 
the results in a closed analytical form and, if one wants to apply it, simulation techniques 
(Monte Carlo techniques) need to be used.  The calculations, moreover, become highly 
involved if the number of choice alternatives increases. 

The best-known discrete choice model, the logitmodel, arises when one makes the 
following three simplifying assumptions: 

• First assumption:   Approach the Normal distribution by a Gumbel distribution.  This 
probability distribution is very similar to a Normal distribution.  However, the 
mathematical form is simpler than that of a Normal distribution, and amenable to 
analytical manipulation.  This makes it easier to manipulate it in an analysis.  The 
cumulative density function for the Gumbel distribution is: 

 
F x x( ) exp( exp( ( )))= − − −µ η  

 
In this formula  ? is the modus (the highest point) in the distribution, and µ is a dispersion 
parameter.   

The mean of the Gumbel-distribution is:  

0.577 constant  s Euler'is                  / ≈+= γµγηm  

The variance is: 

σ π µ2 2 26= /  
 

The mean of the error term m = 0, so η = -γ / µ 
Figure 3-1 shows the Normal distribution and the Gumbel-division, both normalised 
with means equal to 0 and variances equal to 1. 

• Second assumption.  Assume that the probability distributions for all error terms are 
identical,  in other words, that all have the same variance. 

• Third assumption.  Assume that the probability distribution for all the error terms are 
statistically independent.  

 
With these assumptions, it can be shown that the probability of choosing alternative a out of 
a total of K alternatives is: 

Pr( )a
e

e

V

V
k

K

a

k
=

=∑
µ

µ
1

 

 
We call this formula the multinomial logit model or, in short, the logit model.  The name 
"logit" derives from the so-called logistic function, which has an S-shaped graph.  We will 
come across it further on in this chapter.  The formula shows that the probability that 
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alternative a is chosen, depends on the observed utilities of the alternatives, and also on the 
dispersion parameter µ.  Because all utility components are multiplied by the same constant 
factor, the dispersion parameter µ can, in practice, not be estimated separately.  We can 
give µ an arbitrary value.  If we let  µ = 1, the logit model becomes: 

Pr( )a
e

e

V

V
k

K

a

k
=

=∑ 1

 

 

Note that the utilities have been scaled by a factor of 1/ µ compared to of the utility 
components V, with which we started the derivation of the logit model. 

 

Suppose that one wants to apply the logit model to the problem of mode choice.  In that 
case, the symbols have the following meaning: 

Pr(a) = the probability that a will be chosen. 
Vk = the observable utility of travel mode k 
K = the number of alternative travel modes 
 
If K = 2, this is called a binary logit model and if K > 2 it is called a multi-nomial logit model. 

The observable utilities Vk are, as we said, a function of the characteristics of the alternatives 
and of the personal characteristics.  For this function, one usually takes a linear function as 
illustrated in the following example: 

 
Figure 3-1  Normal amd Gumbel distributions (normalized) 
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Example 
Imagine a situation in which one can choose between three transport modes: car, bus and bicycle.  
Assume that the observable utilities Vk for a particular group of people (who have the same 
personal characteristics) can be given by the following functions: 

Vcar =  1.0  - 0.15 * Kcar  - 0.10 * Tcar  
Vbus   =   - 0.15 * Kbus  - 0.10 * Tbus  
Vbicycle   =  -0.5   - 0.10 * Tbicycle  

 

In this example, T and K are, respectively, travel time and travel costs, and they have the following 
values: 

 

 
 

Now we can calculate the probabilities that a particular travel mode will be chosen by individuals in 
this group as follows: 

Vcar = 0.47  Vbus = -1.53  Vbicycle  = -2.50 
 
Pr(car) = e0.47 / ( e0.47 + e-1.53 + e-2.50 ) = 84.3  % 
Pr(bus)     = 11.4  % 
Pr(bicycle)    =   4.3  % 

 

3.2 Specification of a logit model 
The example above the functions for the observable utilities Vk were given.  Determining 
these functions (this is called the specification of the model) is far from trivial.  We can 
distinguish a number of phases in the specification process: 

3.2.1 Functional form 
It is usual to apply a linear function of the characteristics.  These functions give reasonable 
results in practice.  The advantage of a linear function is that the estimation of the parameters 
from the observations is easier.  Specification of a linear function is, however, not 
mandatory; non-linear functions are also applicable. 

3.2.2 Variables 
Two kinds of variables occur in the functions of the observable utility: 

• Generic variables are variables with the same coefficient (unequal to zero) in all 
functions for the various alternatives.  In the example above, the travel time is a generic 
variable.  The basic assumption here is that one minute of travel time has a similar impact 
on the utility, whether it concerns a minute of time travelled by car, bus, or bicycle. 

• Alternative-specific variables are used in one or more, but not in all utility functions.  
They have the same coefficients in the utility-functions in which they are used.  In the 
example above, travel costs is an alternative-specific variable.  An alternative-specific 
variable is often used in the utility function of only one alternative.  If we had, in the 
example above, reason to suppose that the travel time of the three alternatives exerted 
different influences on the choice, we would have specified three different alternative-

 Car Bus Bicycle 
T  (min) 5 15 20 
K  (BEF*100) 0.20 0.17 - 
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specific variables for the travel times of the car, bus and bicycle, and different 
coefficients would have been estimated.  Constants are a special form of alternative-
specific variables (also called alternative-specific constants). In the example above we 
two alternative-specific constants are used. 
 
The example only used characteristics of the alternatives as variables.  We worked on 
the premise that the functions were estimated for a group of individuals with the same 
personal characteristics.  In general, however, the personal characteristics of the 
individual who makes a decision could be used in the utility functions.  For example, 
socio-economic variables such as income, age, etc.  Because the socio-economic 
variables for one individual will not differ across the various alternatives, they need to be 
specified as alternative-specific variables. 

 

3.2.3 Calibration 
When the functional form and the variables in the functions for the observable utilities have 
been determined, we can, with the aid of observations, estimate the parameter values 
(coefficients).  There are standard statistical procedures for this purpose.  The estimation of 
the parameters of traffic models is not dealt with in this introductory course. 

 

3.3 Graphic illustration of the binary logit model 
Suppose that there is a choice between two alternatives: alternative 1 and alternative 2.  This 
implies for a binary logit model that: 

Pr( )1
1

1 2
=

+
e

e e

V

V V  

 
Divide the numerator and the denominator by exp(V1) to get: 

Pr( ) ( )1
1

1 1 2
=

+ − −e V V  

 
We now plot Pr(1) as a function of (V1-V2). See Figure 3-2. 

The curve that emerges is called a logistic curve.  As expected, the probabilities for both 
alternatives are equal to 0.5 when the observable utilities are equal (i.e. when V1-V2 = 0.  If 
V1 is large compared to V2  (i.e. if V1-V2 >> 0).  Pr(1) approaches 1 asymptotically. 
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When the reverse is the case and V1 is much smaller than V2, Pr(1) approaches 0. 

3.4 Aggregate and disaggregate models 
The logit model discussed above is an example of a disaggregate model. This means that the 
model describes the behaviour of individuals, or of groups of individuals, who share the 
same personal characteristics.  The majority of models that we discuss in the other chapters 
of this course are aggregate models.  These models use averages for large groups of 
individuals, for example over a zone. 

Although a disaggregate model enables us to calculate choice probabilities on an individual 
basis, we are really interested in the prediction of travel behaviour for an entire area.  
Because the logit model is non-linear, aggregating individual probabilities to probabilities for 
an entire area is a non-trivial exercise.  It is not correct to simply accept the average values 
of the explanatory variables across the entire area.  We can illustrate this by an example.  
See Figure 3-3. 

The correct average value for a group of 2 people A and B is (Pr(A) + Pr(B))/2.  If we take 
the average values of the explanatory variables we get the incorrect value of Pr((VA + 
VB)/2), which is indicated by point C in the figure.  To deal with the problem, a number of 
procedures have been proposed.  One possible solution is to reduce the aggregation error 
by the introduction of a classification into person types. 

 
Figure 3-2  The logistic curve 
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When applying the logit model it is always advisable to use disaggregate data.  If these are 
not available then there is no other option than to work with average values for the 
observable utilities over a whole geographical area.   The disadvantages of such a procedure 
have been explained above. 

3.5 Restrictions of the logit model 
The assumptions we made in the derivation of the logit model, namely identical error terms 
with the same variance and mutually independent error terms, have led to an easily 
manageable model.  However, if these assumptions have not been met, the application of the 
logit model will lead to incorrect results.  

We will illustrate this by two examples.  The problem in both examples is one of route 
choice.  Since the logit model can, in principle, be used for all kinds of choice situations, it 
should be noted that the problems could also occur in other contexts.   

 

Example 1  (non-identical error terms) 

When we looked at the binary logit model, we noted that the probabilities for both 
alternatives are a function of the difference of the observable utilities of the alternatives.  
Suppose that one writes the observable utility in a route choice model as a linear function of 
the travel times of the alternative routes.  The logit model would then show that the 
probabilities regarding the choice of the various routes that could be taken, are functions of 
the difference in travel time between the alternatives. 

Observe the route choice problem in Figure 3-4.  In the first case (Figure 3-4a), the travel 
times along both routes are respectively 5 and 10 minutes.  In the second case, travel times 
are 125 and 120 minutes.  The difference in travel time via the alternative routes is, in both 

 
Figure 3-3  Error made when aggregating by means.2 
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cases, 5 minutes.  Here, the logit model would predict that, in both cases, the traffic would 
spread itself over the alternative routes in the same proportions.  This leads to an illogical 
result, for one would not expect that a difference in travel time of 5 minutes on a total 
journey of 5 to 10 minutes would give the same result as a similar difference of 5 minutes, 
but now over a journey of 2 hours. 

 
The cause of the incorrect result lies in the fact that in the derivation of the logit model it is 
assumed that the variances of all the error terms are identical.  This is not so in this example.  
The variation in the perception of travel times for long journeys will be larger than for short 
journeys. 

 

Example 2a (error terms not statistically independent)  

In the network of Figure 3-5 there are three routes between O and D.  The travel time along 
each route is 1 hour.  The lower two routes overlap with one another.  The degree of 
overlap is indicated by ρ.  Since the travel times along the three routes are equal, the logit 
model predicts that the traffic will divide itself in equal proportions over the network.  Each 
route gets 1/3 of the traffic.  If  ρ  is small, in other words, if the routes show little overlap, 
as indicated in Figure 3-5b, then the result appears to be reasonable, because the travellers 
will judge the three routes as more or less equal alternatives.  But when there is a significant 
overlap, as in Figure 3-5c, this is no longer the case.  Half of the traffic will probably choose 

 
Figure 3-4  Logit route choice(1).5 
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the highest route, and the rest will divide itself into two parts, each quarter taking one of the 
lower routes. 

 

The cause of the incorrect results here lies in the fact that the error terms for the alternatives 
are not statistically independent, although this is implied in the derivation of the logit model.  
Because both lower routes overlap significantly, the error terms are in fact strongly 
correlated.   

 

Example 2b (error terms not statistically independent) 

Another example where the logit model gives incorrect results is the so-called blue bus-red 
bus problem. 

Assume that 50% of travellers in a particular city choose to take the car, and the other 50% 
the bus.  This means that the utilities of both transport options are on an equal footing.  Now 
suppose that the bus company decides to paint half of the busses blue and the other half red.  
The traveller now has three options, namely the car, the blue bus and the red bus.  The 
utilities of the three alternatives are equal.  The logit model will predict that each of the three 
alternatives has one chance in 3 of being chosen.  Thus, the share held by the car would 
lower from 50% to 33%.  In reality the percentage of the car remains at 50% ,of course, 
and the other travellers will divide themselves evenly over the blue and red busses. 

 
Figure 3-5  Logit route choice (2).5 
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Just as in the route choice problem of example 2a, the erroneous result is caused by the fact 
that the error terms are not statistically independent.  The two bus-alternatives are, in fact, 
identical, and their error terms are, therefore, completely correlated. 

3.6 Hierarchical logit models 

3.6.1 Simultaneous or sequential choice 
The previous paragraphs have shown that the logit model is a good and simple instrument by 
which to analyse choice situations, but that we must be aware of its limitations. 

The logit model gives incorrect results in the following cases: 

• When the alternatives are not independent (the error terms of the alternatives are 
correlated in that case); 

• When the variances in the perception of the alternatives differ strongly from each other 
(the error terms of the alternatives are then not identical). 

 
If we are to use the logit model in its simplest form we must, therefore, ensure that the 
alternatives are observed as clearly different and independent possibilities.  There must also 
be sufficient reason to suppose that the variations in the perception of a certain alternative 
will not diverge too much from the variations in the perception of the other alternatives. 

If the conditions stated above are not met we can use a probit model instead of a logit 
model.  The probit model uses a Multi-Variate Normal Distribution and the limitations of the 
logit model do not apply.  The disadvantages of the probit model, however, are that it can 
not be written in a mathematically closed form and that, for a large number of alternatives, 
the calculations are very laborious.   In addition, its application requires data regarding the 
co-variance between the error terms of the alternatives, and these data are often not 
available.   

Another approach that enables us to continue to use the advantages of the logit model, is the 
application of the so-called hierarchical logit model.  The hierarchical logit model is 
suitable in those cases in which we suspect that a number of alternatives are correlated.  In 
that case, the choice process is divided over a number of phases or levels.  It is necessary 
that alternatives on the same level  remain sufficiently distinguishable, in order that a logit 
model can be applied on this level.  Because the choice between alternatives on the same 
level happens simultaneously, one speaks of a simultaneous choice.  It is now assumed that 
the choices on the different levels happen one after the other. In other words we are 
dealing with a sequential choice structure.  We will illustrate this basic idea, one that comes 
down to the application of conditional probabilities, using a number of examples. 

One could, in the example 2a, which was discussed in the previous paragraph, choose, first 
for the highest or lowest route, and only afterwards, if one had decided on the lowest route, 
on sub-route 2 or 3. 

In the case of the blue bus/red bus problem, the choice is primarily one between car and 
bus.  One decides on the blue or red bus only when one has first chosen in favour of the bus 
per sé. 
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An hierarchical logit model can also be used in the following case.  Suppose there is a 
choice of a journey by car, bus or train.  This could, to start with, be seen as a choice 
between private transport (car) and public transport (bus and train).  The choice whether to 
take the bus or the train only occurs in the second instance, when the decision on public 
transport has already been made. 

all
trips

car public
transport

train bus

 

Figure 3-6  Sequential choice structure  

 
An hierarchical logit model for the last example can be represented in a schematic way as 
shown in Figure 3-6.  The alternatives bus and train can actually be seen as a choice in 
favour of public transport.  They are, therefore, brought together in a separate level.  A logit 
model is used at the highest level in order to determine the shares taken by the car and by 
the public transport.  In order to do this one must give the alternative “public transport” a 
utility value.  The utility for the public transport is a function of the utilities that have been 
distinguished for the bus and train separately.  The utility of the public transport sector thus 
calculated is called a combined  utility.   

3.6.2 Calculation method hierarchical logit model 
We will illustrate the calculation method of the hierarchical model, using a problem of 
destination choice and travel mode choice. 

The set of destinations is indicated by D, the set of available travel modes to a particular 
destination d by Md.   Suppose we have reason to believe that someone who is about to 
travel decides first for destination d∈D and then for travel mode m∈Md to reach this 
destination.  In this case the choice structure looks like Figure 3-7.  The total of available 
alternatives is subdivided in a number of subsets.  These subsets consist of a number of 
alternatives that share certain characteristics so that one can expect the utilities to show 
some correlation.  These subsets are also called “nests”.  This is why an hierarchical logit 
model is sometimes called a nested logit model. 
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We envisage the total observable utility of a destination-mode of transport combination to 
be composed from two components: 

Vdm: a component in the observable utility that varies with traffic mode m, also inside a 
certain choice for the destination d. 
 
Vd: a component of the observable utility that is independent of the chosen mode of 
transport.  The only determining factors are the characteristics of the destination d. 
 
From now on we will assume that utilities can be added up.  The total utility of an alternative 
is equal to the arithmetical sum of the utility components of that alternative.  

The conditional probability of choosing traffic mode m, given that destination d has already 
been chosen, is given by: 
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If we want to apply a logit model to the destination choice at the highest level of the 
hierarchy, we must assign an observable utility to each of the destinations.  This observable 
utility consists of the component Vd, and also of a combined utility, a sort of replacement 
value that characterises Md,  the set of available travel modes to a certain destination d.  To 
this end, the most obvious solution would be to assign the maximum of the observable 
utilities Vdm to the destinations concerned.  One must remember, however, that utilities are 
stochastic variables.  If we assume that the error terms in a nest d show a Gumbel 
distribution with a dispersion parameter of µ2

d , it can be shown that the expected value V′d 
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Figure 3-7  Calculation method hierarchical logit model. 
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of the maximum of the observable utilities of all modes of transport to a certain destination d 
are given by: 
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The probability that destination d will be chosen can now be written as: 
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The probability that the combination of destination and travel mode (d,m) will be chosen is 
equal to the probability of destination d multiplied by the conditional probability of travel 
mode m, given destination d: 
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The dispersion parameters µ1 and  µ2

d have been maintained in these formulas because they 
are not necessarily equal.  This plays a role when combining two sequential logit models, and 
is expressed by the exponents in the first factor of the formula above, where µ1  is multiplied 
by V′d. 

It is not possible to estimate the distribution parameters µ2
d and the utilities Vdm separately. 

Thus we set µ2
d = 1, which means scaling Vdm by a factor of 1/µ2

d.  We also set  θ d = µ1 

/µ2
d , which leads to the following: 
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The above expression is called a logsum.   

 



 

 

34 

Finally, it is not possible to separately estimate both factors in the expression θd Vd.  We 
assume a scaling of Vd with a factor of 1/θ d .  This eventually leads to the following formula 
for the hierarchical logit model: 
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In this formula the θd are empirically determined parameters.  If we now calibrate the 
hierarchical logit model with the available observations we must determine both the values of 
the coefficients in the functions for the observable utilities Vd and Vdm and the values of θd. 

To gain consistent results it can be shown that the following must be the case: 

 
µ1 ≤ µ2

d  or, equivalently:   0 < θd  ≤ 1. 
 
Since µ, the distribution parameter in the Gumbel distribution, is inversely proportional to the 
variance, the variance in the error terms at the first level of choice is larger, or at most equal 
to that on the second choice level. 

If one finds θ d = 1  for all nests d, then the hierarchical logit model is algebraic equivalent to 
the normal (non-nested) multi-nomial logit model.  Because in that case  we get: 
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This means that the utilities allocated by the individual inside a subset are not correlated and 
that, therefore, a sequential choice model should not be used.  We are then dealing with a 
simple simultaneous choice model. 

A value of  0 < θ d < 1  means that the utilities in a nest d are correlated, and the more so as 
θ d approaches zero. 

If, lastly, we find that θd  ≤  0 of θd  > 1 for a nest d, it indicates that the postulated model 
with its subdivision into nests is incorrect.  We must then try another choice structure.   

If the choice structure consists of a large number of nests, it may be difficult to estimate a 
separate parameter θd for each nest.  For simplicity sake it is therefore assumed that the 
distribution parameters µ2

d for all nests d at the same level are equal. In that case the index d 
may be left out of the parameter θd in the formulas above. 

 

We will look at the problem of simultaneous and sequential choice structure again in the 
chapter on traffic mode choice. 
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3.7 Summary 
The logit model, which is one of the models of discrete choice theory, is very suitable to 
analyse choices in traffic engineering.  The models are based on the assignment of values to 
characterise the attractiveness of each of the alternatives.  The valuations are called utilities.  
Since we do not know all of the characteristics that define the utility of an alternative, the 
utility has a stochastic component.  The choice distribution over the alternatives is given in 
terms of probabilities that can then be aggregated over an area or population group.  In its 
simplest form, the logit model has a number of limitations, which can be partly overcome 
with the aid of a sequential choice structure.  

Since the logit model will often be referred to in later chapters, we dealt with it early in this 
course. 
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4 Zones and Networks. 
A traffic demand model applies to a particular geographical study area.  In principle, trips in 
this area can begin and end at any address, and travellers can choose from all roads, streets 
and other transport options.  Because of the sheer volume of data, however, it is not 
practical to gather and analyse data based on individual information.  We construct a 
simplified model of reality by introducing the following elements: 

• Zones;  the area to be studied is divided into a number of zones.  We study the trips 
from and to these zones.  We assume that all trips begin and end at an imaginary point 
inside this zone, which is called the centroid of that zone. 

• Networks;  the transport system consists of a number of networks, that represent the 
available transport modalities.  The network is an abstraction of reality.  The detailed 
level of representation depends on the problem to be solved. 

 
Since the design of an outline of the study area into zones and networks strongly depends on 
the problem to be solved, it is not possible to hold to stringent rules.  The intention behind 
this chapter is to give some general guidelines that may be helpful in the outline design.  

4.1 Area zoning 
We distinguish the study area and a surrounding area of influence.  Both areas are divided 
into zones, called respectively the internal and the external zones.  In the study area we 
investigate the traffic flows from and to each zone.  As for the area of influence we only 
examine traffic flows that start or end inside the study area.  When traffic moves between 
two external zones, we only look at the traffic that crosses the study area. 

Important parameters are the number of zones to be used and their size.  Each zone has a 
fictitious point, usually situated in the point of gravity of the area, from which all trips from 
and to the zone are supposed to depart and arrive.  This point, called the centroid is linked 
to the network by connectors. Trips between two zones, the interzonal traffic, occur on 
the network.  Traffic that does not leave the zone, the intrazonal traffic, has its departure- 
and arrival point in the same centroid and is not analysed. 

This means that zones must not be too large.  If they are too large, a sizeable part of the 
traffic does not appear on the network and will, therefore, fall outside the analysis.  Nor can 
zones be too small.  Small zones require numerous input data.  This increases the costs of 
the study, hampers interpretation of the results and increases the chance of mistakes. 

For urban and provincial studies practice has shown that zones with a population of 1000 to 
2000 people work reasonably well.  Nevertheless, it is possible to deviate from this value, 
depending on available funds, the scale or the goal of the study. 
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The following values can be taken as guidelines for the number of zones.  Large urban or 
regional studies typically have 300 to 500 zones.  The provincial traffic demand model for 
Flemish Brabant (see Figure 4-1) comprises about 1000 zones.  This may be considered to 
be a large number. Fifty to 100 zones are enough for small-scale studies. 

In terms of traffic production, zones need to be about of equal size.  One needs to aim, 
moreover, for homogeneity in the determining factors of traffic production and attraction.  
Since land-use largely determines traffic production and attraction, it is advisable to divide 
the zones in such a way as to achieve optimal homogenous land-use inside a zone. 

The zone borders should coincide with the borders of administrative units.  Examples are 
districts used by National Institutes for Statistics, voting districts, municipalities, counties or 
provinces.  Using such administrative units eases access to socio-economic data.  Zone 
borders should, preferably, also coincide with natural barriers such as rivers, canals, 
railways, etc.  Since there are only a limited number of places where these natural barriers 
can be crossed, the comparison of model results with field counts is simplified.  The shape of 
the zones should be as compact as possible, because this limits the number of mistakes in 
the calculation of distances.   

When dividing the area of influence into zones it is usual to increase the size of the zones as a 
function of the distance to the study area.  Since most trips will travel over a relatively short 
distance, the number of relevant trips between the area of influence and the study area will 
rapidly decrease as the distance increases. 

Only one zone-division usually suffices for all stages in the traditional traffic model.  When 
available time and funds allow, one may deviate from this procedure.  It has been shown, for 
example, that an adequate modelling of public transport benefits from a more detailed study 
area.  The provincial model of Antwerp, for example, shows nearly every public transport 
stop, especially in the town itself.  In such cases, an hierarchical division into zones and sub-
zones would be applicable. 

Brussel

Leuven

Mechelen

 
Figure 4-1  Zoning in the model for Flemish Brabant. 
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4.2 Networks 
The transport system is represented by a network comprising of nodes and links that 
connect the nodes (see Figure 4-2).  The network model is a simplified reproduction of the 
real network.  The network is used to calculate the travel times between points of origin and 
points of destination.  The calculated results of the traffic model can, additionally, be 
reproduced on a network graph. 

When dealing with modalities such as car, bicycle and walking, the model networks are 
immediate derivatives of the physical network.  The links of the network represent the 
roads.  The nodes of the network are the intersections.  Nodes in the model network are 
also used to mark changes in road types and the sites, for example, of bridges and other 
specific infra-structural facilities. 

Attributes that characterise the network are assigned to the links.  Examples of link-
characteristics are length, speed, travel time, capacity, etc.  No characteristics are assigned 
to the nodes of the model network.  Specific characteristics of intersections, such as long 
waiting times for some exits or the prohibition to use certain turns, can be modelled by 
adding extra (dummy) links.  

In contrast to a road network, a public transport network represents the physical 
infrastructure, as well as lines that represent the services carried out on that network.  In a 
model network these lines are defined as a series of consecutive links to which variables 
such as frequency, capacity and travel times are assigned.  Stops, feeder networks to and 
from stations and bus stops, and points of transfer must also be defined. (see Figure 4-3) 

 



 

 

39 

 

 
Figure 4-2  Outline of zones and road network.2 
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These days it is usual to draw up separate networks for the different transport modalities.  
This means that one implicitly assumes a trip to be completed via one transport mode.  
There is a tendency, however, to switch to the application of so called multi-modal 
network models.  Here, the networks for the different transport modes are linked via 
transfer links.  This means, for example, that a trip consisting of a car journey to the station 
followed by a train journey, can be adequately modelled. 

As we noted in the discussion of the area division, each zone has a centroid.  Centroids are 
points where the traffic of the zone in question enters or leaves the network.  Each centroid 
is linked to the rest of the network by one or more connectors.  The connectors are a 
schematic representation of the local street pattern inside a zone.  Only the traffic that 
originates from the zone in question can use it.  Ongoing traffic between two other zones is 
not considered to use the connectors of an intervening zone.  It is important to link the 
connectors to the network in such a way as to imitate the real situation as close as possible. 

A model network is a directed network.  This means that every link has a direction 
assigned to it.  A road with two-way traffic, therefore, is represented by two links.  Even 
when some computer models show only one link on the screen, the road is presented by 
two network links internally. 

It is usually unnecessary to reproduce the smallest detail in the model of the physical 
network.  Large networks require many input data and are, therefore, expensive.  The 
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Figure 4-3  Public transport network.5 
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probability of errors, moreover, increases.  Computing optimal routes takes a lot of 
computer time for large networks.  Computing time increases with the number of nodes 
raised to a power between 2 and 3.  

 

Roads in a network are usually classified according to their function.  One distinguishes, for 
example, motorways, main roads, secondary roads, local roads and urban streets.  It is 
advisable to also represent those links in the model that lie one level below the level of 
interest.  If one wants to study the motor way network, for example, then one should also 
incorporate the main roads in the network model. 

The following values can serve as a guideline for the size of the network.  A typical network 
for an urban or region holds in the order of 1000 to 5000 nodes.  The car network for the 
province of Flemish Brabant (Figure 4-4) has about 10000 nodes, and can thus be seen as 
a large network.  For approximate studies networks of several hundred nodes are sufficient.
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Figure 4-4  Road network in the model for Flemish Brabant 
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5 Production and attraction 
The goal of the production/attraction phase in the classical traffic demand model is to predict 
the total number of produced respectively attracted trips for each zone in the study area.  
The prediction is based on the socio-economic data of a zone.  In this phase, two related 
models are used. 

• Production model.  This model calculates the total number of trips produced per zone, 
irrespective of the zone of destination. 

• Attraction model.  This model calculates the total number of trips attracted to a zone, 
irrespective of the zone of origin. 

The best results in the design of good production and attraction models are achieved when a 
breakdown is made according to trip purpose and other characteristics. We will begin this 
chapter with a short explanation of some commonly used terms.  Next we will look at the 
classification of trips.  This will be followed by a discussion of the factors that influence the 
production and attraction of trips.  We will then look at the most widely used methods to 
calculate production and attraction, namely regression-analysis and category analysis.  The 
logit model also lends itself very well to the determination of production and attraction, but it 
is not used much yet for this purpose in practice.  We will give an example to illustrate the 
use of the logit model for the calculation of production.  The chapter will end with some 
general remarks about the stability of the calculated production- and attraction parameters, 
and on how to balance production and attraction. 

 

5.1 Terminology 
A trip occurs when someone moves from a place where he has undertaken a specific 
activity to another place where he will undertake a new activity.  The starting point of the trip 
is called the origin and the finishing point the destination.  A trip can be made using one 
mode of transport or a sequence of transport modes.  In this context, walking is also taken 
as a mode of transport.  We call the movement of a person between two successive points, 
using one mode of transport, a journey.  Thus, a trip can consist of several journeys.    A 
trip that originates in O and has destination D, for example, can consist of a bicycle journey 
from H to point 1, a train journey from point 1 to point 2, and a walking journey from point 
2 to B. 

Trips that begin or end at home are called home-based trips.  All other trips are non-home-
based trips.   

A trip chain consists of a number of trips of which the first begins in one’s own home, while 
the last returns there. One could, for example, make a trip from home to work in the 
morning and a return trip from work back to the home in the evening.  Together, they are 
called a trip chain.  In the first trip, the residence was the point of origin and the workplace 
the point of destination.  In the second trip, the reverse happened. Trips are undertaken for 
specific purposes, for example, to get to work or to go shopping. This is called the purpose 
of the trip. 
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The terms origins and destinations (or departures and arrivals) do not always have the 
same meaning as the terms production and attraction.  In general, the zone of origin 
produces trips and the zone of arrival attracts them.  There is one exception to this rule: in 
home-based trips, the zone in which the home is located is always considered to have 
produced the trips.  This means, for example, that in the case of home-based work trips, 
even though traffic in the evening peak period travels back to the home zone, the home zone 
is still considered to have produced the trip.  

 

5.2 Trip classification 

5.2.1 Classification according to trip purpose 
It has been found that production and attraction models yield better results if the trips are 
classified according to trip purpose and if separate models are then made for the different 
purpose categories.   

For most purposes, the home is the origin or destination of a trip.  Primary in these home-
based trips are the trips to work, but other purposes may also play an important role, such 
as education, shopping and social or recreational activities.  Trips that do not start at the 
home and that do not end there (non-home-based trips) generally represent a small part of 
the total number of trips and are, therefore, usually not further classified according to 
purpose.  Thus we get the following breakdown: 

 

 Purpose Abbreviatiom 
Home-based work HBW (home-based work) 
 education HBO  (home-based other) 
 shopping  
 social / recreational  
 other  
Non home-based  NHB  (non home-based) 
 

5.2.2 Classification according to the departure time of the trip 
Trips are divided into those that occur during peak periods (morning or evening) and those 
that occur outside of the peak period. The contributions of the different trip purposes 
strongly depend on the time of day during which the trips are undertaken. 

The trips that are undertaken with the purpose of work or education, usually occur during 
peak periods and are called mandatory trips.  Trips that are undertaken for shopping 
purposes, social/recreational purposes and other purposes, are less obligatory and are, 
therefore, called optional trips.  This means that one can decide not to make the trip at all.  
Even if one does decide to make the trip, there is more freedom in the choice of departure 
time.   
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5.2.3 Classification according to personal characteristics. 
Because trip behaviour is strongly influenced by socio-economic factors, a classification into 
these factors can often be useful.  The following characteristics are sometimes used for this 
classification: 

• Level of income 
• Car ownership 
• Size and structure of the household 
 
The most common classification is the one into car ownership (a classification, for example, 
into 0,1 or more cars per household). 

5.2.4 Classification according to transport mode 
The following categories can be used in a classification of transport modes used for trips: 

• Walking 
• Bicycle 
• Car (when necessary divided into: driver and passenger) 
• Public transport 
 
It used to be quite common to develop separate production- and attraction models for the 
various modes of transport.  This is rarely done nowadays.  Today, the assignment of trips 
to different modes of transport is carried out in a later stage of the calculation.  We return to 
this point in the chapter on transport mode choice. 

5.3 Factors that influence production and attraction 

5.3.1 Factors that influence production 
 
The following factors influence the production of a zone: 

• Households  characteristics 
-Income 
-Household structure (number going to work, number going to school, age …) 
-Car ownership 

• Zone characteristics 
-Land use 
-Land price 
-Residential density, rate of urbanisation 

• Accessibility 
-Extent of transport options from the zone.  
-Quality of transport options from the zone  

 

Zone characteristics and household characteristics have been frequently used in studies.  The 
characteristic ‘accessibility’, on the other hand, is hardly ever used, neither in production nor 
in attraction models.  Ignoring the influence variable of accessibility in the models means that 
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the production and attraction of a zone are insensitive to changes in the transport system.  
This is a significant shortcoming in current models. 

In addition to what has already been said about this subject in chapter 1.4, we find that a 
change in the transport system usually results in four effects on the pattern of  trip-making: 

• Generative effect: an in- or decrease in the total number of person-kilometres; 
• Distributive effect: a different distribution of the origins over the destinations; 
• Temporal effect: a shift in the timing of the trips; 
• Substitution effect: a shift to another mode of transport. 
 
These effects can occur in combination.  This significantly complicates an analysis of the 
phenomenon. 

By not including the factor of accessibility, the generative effect of a change in infrastructure 
is not reflected in the production- and attraction models. The distributive effect and the 
substitution effect càn be determined using the distribution models which will be discussed in 
chapters 6 and 7.  The temporal effect could be accounted for by  using a so-called 
departure-time model.  Although such models have been developed, they are little used in 
practice.   

It is likely that a change in infrastructure will have little generative effect on the mandatory 
trips to work and school, at least in the short term. A generative effect will, most likely, 
occur for optional trips.  

The temporal effect of a change in the transport system is possibly more important than has 
previously been assumed.  Congestion problems will cause many travellers to leave earlier 
or later.  This phenomenon is called “peak spreading”.  If improvements in the infrastructure 
lead to a reduction of congestion problems, many people will, fairly quickly, revert to the 
original peak period, causing renewed congestion during the peak period, thus defeating the 
intended effect of the improvements.   

Since accessibility definitely is an important factor in determining the production and 
attraction of zones, there has been an effort to develop models that incorporate the 
generative and temporal effects caused by a change in accessibility.  A number of models 
have been suggested, but, to date, there has been little agreement regarding the accuracy of 
these models.  This is due to the difficulty in quantifying the concept of accessibility.  For this 
reason, this type of model is rarely used in practice and we will not discuss it further in this 
course.   

5.3.2 Factors that influence attraction 
The following factors influence the attraction rate of zones: 

• Number of employees 
• Land-use 

-Industrial (type of industry, occupied area) 
-Educational facilities 
-Shops (floor area, sales) 
-Service sector (hospitals, banks, government institutions, conference centres …) 
-Recreational (sport centres, tourist- or amenity sites, theatres …) 
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-Storage and transfer (harbours, airports …) 
• Accessibility 

-Extent of transport options to the zone 
-Quality of transport options to the zone 

 
The zones that attract trips are usually the areas of employment.  This is primary so because 
these areas offer employment, but also because these areas attract supply and other 
services. 

As with trip production, accessibility most likely plays an important role. 

5.3.3 Factors that influence production/attraction in goods transport  
In the previous section we have listed the factors that influence the production and attraction 
in personal transport.  However, goods transport also plays an important role in traffic- and 
transport policy.  Goods traffic counts for a large part of all road-traffic.  About 15% of all 
vehicles on the primary road network are goods vehicles.  This percentage varies between 
2% and 20% on urban networks.  The following factors influence the generation and 
attraction of  goods transport.   

• Number of employees in a company 
• Company turnover 
• Built-up area 
• Size of an industrial complex 
• Type of company 
• Accessibility of a company 
 

5.4 Regression analysis 
Regression analysis is the most frequently used method to calculate productions and 
attractions. 

In a linear regression model we try to predict a variable Y as a linear function of one or more 
influence variables Xi 

Y a b X b X b X= + + + +1 1 2 2 3 3 L  
 
The variable Y to be predicted is called the dependent variable. The influence variables Xi 
are the independent variables.  The coefficient a is the constant factor of the regression 
equation, the coefficients bi are the regression coefficients. When there is only one variable 
X, one speaks of simple regression.  When there are several variables X1, X2 … , we use 
the term multiple regression. 

When regression analysis is used for the development of production and attraction models, 
the Xi represent the socio-economic influence factors mentioned above, for example 
income, car-ownership, etc.  The dependent variable Y represents the number of trips 
produced or attracted, usually subdivided according to purpose.  Most production and 
attraction models predict the number of trips for a peak period. 
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The constant factor and the regression coefficients are estimated (calibrated) using socio-
economic data gathered over a base year.  The calibration uses the method of least squares 
for which computer programmes are widely available.  It is assumed that these coefficients 
are time-invariant, so that the trips for a forecast year can be determined using the estimated 
regression equation and expected socio-economic developments.  

5.4.1 Production 
The development of regression models for production can be based on (aggregate) data per 
zone or on (disaggregate) data per household. 

5.4.1.1 Production based on zonal data  
With these models one tries to predict all trips produced by a zone, using socio-economic 
data that are characteristic for the entire zone.  This method should only be used when one 
has to rely on aggregate zonal data.  When more detailed data are available at the 
household- or at the personal level, it is clear that aggregation to zonal means or totals 
looses a lot of information.  The method will only yield reliable results if zones are fairly 
homogenous in their socio-economic structure.  If this is to be achieved, the zones would, 
generally, have to be small.  This, in turn, increases the costs and complexity of the models in 
regard to data gathering and calibration. 

It should be noted that regression models at the zonal level can use zonal totals, such as 
trips-totals per zone and cars-totals per zone.  But zonal means, such as number of trips per 
household per zone and number of cars per household per zone, can also be used.  The 
difference between the two methods is small, although the use of zone means is preferred, 
since this filters the influence of the zone size out of the equation (in so far as this does not 
appear in the other variables). 

5.4.1.2 Production based on household data 
We saw in the previous paragraph that a model based on data per household is preferable 
to a model based on zonal data.  This renders the model independent of the chosen zonal 
break-down (both in terms of the size of the zones and their socio-economic composition).  
One also avoids the loss of information that comes with the aggregation of data to the zonal 
level. 

In general, the household is taken as the unit, not the individual.  This is so due to the 
assumption that the characteristics of a household (car ownership, for example, or income 
and composition) determine production, rather than the personal characteristics of an 
individual. 

 

5.4.2 Attraction 
As we have seen, demographic factors play a vital role when determining production.  In the 
case of attraction, conversely, the determining factors are employment in the zone and land-
use.   
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The most important variable for home-based work traffic is, naturally, employment in the 
attraction zone.   As a rough approximation, every place of employment yields one home-
based work trip.  Information regarding employment is usually available.  When this is not 
the case, one can estimate employment levels on the basis of land-use.  A situation similar to 
that of home-based work trips exists for educational trips. 

Estimating the attractions for the other trip purposes is often based on land-use in the 
attraction zone.  The surface area occupied by shops, companies and institutions could 
express this land-use factor, or another relevant criterion that indicates the importance of the 
attractor. 

When we discussed the regression methods to estimate production, we saw that calibration 
can be done at the zonal level or on the basis of households.  However, when regression 
analysis is used to calculate the attractions, one usually uses aggregate data at the zonal level. 

Lastly, it should be noted that regression equations for normal zones are not used to 
calculate attraction for special attraction zones of great importance (airports for example).  
These special zones require separate models, research or counts.   

 

5.4.3 Problems in the application of regression analysis 
In this paragraph we present some problems that can occur when applying  regression 
analysis for the development of production and attraction models.  It is not our intention to 
give an exhaustive list; regression analysis is a widely used statistical technique with an 
extensive literature, to which we refer for more detailed information. 

5.4.3.1 Multi-colinearity 
This phenomenon occurs when one or more of the independent variables also show a mutual 
correlation.  Obviously one should try to choose the independent variables in such a way as 
to keep them maximally independent of each other, though this may be difficult in practice. 

5.4.3.2 How many and which independent variables?   
In general one will try to keep the models as simple as possible, in other words not to use 
more independent variables than is strictly necessary.  Questions that play a role in the 
decision whether or not to incorporate an independent variable in a multiple regression are 
the following: 

• Are there strong theoretical reasons to introduce a specific variable? 
• Is the inclusion of certain variables useful in the calculation of particular policy decisions? 
• Does the variable to be introduced contribute sufficiently to the explanation of the 

production or attraction to be estimated?    A technique to test this is a so-called step-
wise regression in which the variables are introduced in steps according to their 
contribution to the explanation of the independent variable. 

• Is the future development of the socio-economic variable to be introduced itself easy to 
predict?  If not, it is of little use in the prediction of future productions and attractions. 
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5.4.3.3 Non-linearities 
The regression model assumes a linear relation between trips and socio-economic variables. 
In reality, however, this relation may not be linear.  It is sometimes, though not always, 
possible to circumvent this difficulty with a number of different techniques.  These techniques 
comprise a transformation of variables (for example taking the logarithms of the variable) or 
the use of so-called dummy variables.  We will not elaborate this point. 

5.4.3.4 Constant factor in the regression equation 
In order to guarantee that partial results can be added, it is, in the case of regression on the 
basis of zonal data, necessary for the regression line to pass through the origin.  In other 
words, the constant factor in the regression equation should be equal to zero.  If this does 
not happen the specification of the regression model may be erroneous. 

Example: 

Assume that one finds the following regression equation for the number of departures in a zone: 

Departures = 1080 + Population 

For a zone of 2000 residents, therefore, the number of departures is 3080.  If the zone is split into 
two smaller zones, each with 1000 inhabitants, there are 2080 departures per smaller zone and 4160 
departures for the entire zone.  This contradicts the result of 3080 departures found in the first 
instance.   

5.4.3.5 Extrapolation 
Strictly speaking, regression equations apply only to the range of data that were used for the 
calibration.  When one applies regression equations for forecasting purposes, results that fall 
outside this range can be achieved.    Some caution is, therefore, justified when using data 
that have been calculated in this way. 

5.4.3.6 Ecological correlation 
When using aggregated data a problem can occur that is known under the name of 
“ecological correlation”.  If the data comes from several sub-populations, we may find a 
certain (positive, for example) correlation inside the sub-population, while, if we started from 
the means of the sub-population, we would get a totally different (negative, for example) 
correlation. 
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An example of this is shown in Figure 5-1.  The disaggregated data inside the zone show a 
positive influence of income on production.  If we had used means per zone we would have 
reached a completely different conclusion. 

 

5.5 Category analysis 
In a category analysis the population of the study area is divided into a number of 
homogenous groups or categories, based on specific socio-economic characteristics.  The 
trip behaviour is determined for each of the categories, with the understanding that this will 
remain stable over time.  If one knows the future composition of a zone in terms of 
categories of inhabitants, one can calculated future trip behaviour.  When compared to 
regression analysis, this method has some advantages, but also disadvantages.   

5.5.1 Production 
The principle of category analysis for the calculation of production can best be illustrated by 
an example. 

Example: 

Many research projects have shown that the trip production of a household depends primarily on 
car-ownership, family size and composition, and the income of the household.  In the example we 
assume a classification into three different categories of car-ownership and 4 categories of 
household size.  Having made an inventory of the data, a category analysis could give the results 
shown in Table 5-1, in which the number of trips per household is given per household category.     

 

Income

average
zone B

average
zone A

Trips

Persons in
zone A

Persons
in zone B

 
Figure 5-1  Ecological correlation.2 
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If a category analysis-table has been made using data for the base year, the next step is to 
estimate the number of households in each category in a forecast year.  The total future 
production is then found by multiplying those numbers by the trip rates in the category 
analysis table.   

5.5.2 Attraction 
Category analysis is rarely used to calculate attraction.  It would, in principle, be possible, 
using, for example, a classification in sectors of employment and employment densities.  
However, the problems associated with the gathering of sufficient disaggregated data are 
huge.  

5.5.3 Problems in the application of category analysis 
Although category analysis has some advantages such as the conceptual simplicity of the 
method and the fact that non-linearities are easily accommodated for, when compared to 
regression analysis, it also has its disadvantages.   

5.5.3.1 Many calibration data required 
The most important disadvantage is the need for large numbers of data.  The example above 
is misleading in terms of the number of categories to be distinguished.  In practice one will 
quickly distinguish three categories of car-ownership, six for incomes and six for household 
size and composition.  This gives 3x6x6 = 108 categories. 

Assuming that a minimum of 50 observations per category are required to ensure fairly 
reliable statistical means, a minimum of about 5000 observations would be needed.  In 
reality, this number will be much higher because the observations will not be equally divided 
over the categories.  In short, a small increase in the number of categories leads to a huge 
increase in the data required. 

5.5.3.2 Which categories now and in the future? 
Choosing suitable homogenous categories is a difficult task, although so-called clustering 
methods are available for this purpose.  Another important problem is calculating the future 
break-down of households in a zone over the various categories.  There are no really 
satisfactory solutions to this problem.   

Table 5-1  Results of a category analysis.2 

 Car-ownership of household 
Persons in 
household 

0  1 2+ 

1 0.12 0.94  
2 of 3 0.60 1.38 2.16 

4 1.14 1.74 2.60 
5 1.02 1.69 2.60 
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5.6 Use of logit model for calculation of production. 
The total number of trips made in an area is the consequence of a large number of individual 
choices. If we confine the choice set for individuals to the two options whether to make a 
trip or not, we can use a binary logit model.  We shall illustrate this with the following 
example that was taken from the TransCad manual.4 

Example 

Household characteristics, zone characteristics and the accessibility of the zone determine the 
production of a zone.  These last two characteristics are constant for one specific zone.  The 
production for this specific zone is, therefore, a function of household characteristics only.  As 
noted before, the household is usually taken as a unit, but in this example, we will take the 
individual as a unit. 

We now want to calculate the probability that someone chooses to make a home-based work trip as 
a function of his or her personal characteristics. 

The following personal characteristics are used: 

A  = Age     (in years 16-90) 
ED  = Education    (scale from 1-17) 
G  = Gender    (0 = woman; 1 = man) 
MM  = Married man    (0 = no; 1 = yes) 
WM  = Married woman   (0 = no; 1 = yes)  
CW  = Woman with child under 6.  (0 = no; 1 = yes) 
 

The last four variables are so-called dummy-variables.  These are variables, which can only assume 
the values 0 or 1.  Each dummy -variable divides the population into two sub-groups.  By using a 
number of dummy -variables, we can distinguish a number of sub-groups.   

Each individual has two choice alternatives.  This enables us to use the binary logit model.  
Choosing alternative 1 means that a trip is  made, alternative 2 represents the fact that no trip is 
undertaken.   

The probability that a home-based work trip will be made can be formulated using the following 
binary logit model (see chapter 3.3) 

Pr( ) ( )1
1

1 1 2
=

+ − −e V V  

 
Using a data-file, where each line notes the values of the personal characteristics for a person, and 
whether or not that person made a home-based work trip, we can estimate the functions for the 
observable utilities V1 and V2 .  Assume that we get the following results: 

 
CWMWMMGEAV ∗−∗+∗+∗+∗+∗−−= 74.131.059.127.021.005.047.01  

V2 0=  

 
Since the socio-economic variables for one individual will not vary across the two alternatives they 
need to be specified as alternative-specific variables (see chapter 3.2).  It does not matter in which 
utility function we include the alternative-specific variable.  If we had, for example, included G in the 
function V2 instead of V1, we would have achieved the same coefficient 0.27, although prefixed by a 
minus sign.  The end-result of the calculation remains the same because the binary logit-model uses 
differences in utilities.  

 
We must ensure that all coefficients have signs that agree with our intuitive expectations.  For 
example, the minus sign for the variable CW indicates that a woman with a young child is less likely 
to make a home-based work trip. This is so because the observable utility for the execution of a trip 
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becomes smaller when CW has a value of 1.  The values for the coefficients also enable us to 
calculate the effect of a change in one of the variables.  Assume that the probability of an home-
based work trip for someone with an education level of E = 10 equals  50%.  Check that that this 
probability rises to 70% if the level of education rises to E = 14 and if the other variables do not 
change. 

 
The logit model discussed above computes the probability that a specific individual will 
make a trip.  However, we want to know the total number of trips made in an area.  We will 
therefore still have to aggregate the individual probabilities, to arrive at a forecast for the 
entire area.  See the remarks concerning this problem in chapter 3.4. 

 

5.7 Stability of production and attraction parameters. 
Production- and attraction models are developed to determine the generation of trips in a 
forecast year.  The calibrated parameters, however, are usually based on data from a base 
year.  How can we be certain that these parameters are invariant in time so that they will 
also apply to future situations? 

Research shows that trip behaviour remains fairly stable when the time horizon is not too far 
away.  This requires however, that external social influences do not change too drastically. A 
considerable increase in fuel prices is an example of this kind of external impact. 

Other social tendencies, such as gradual lifestyle changes in society at large, or an ageing 
population will influence trip behaviour in ways that cannot be reflected in the classical 
production and attraction models. 

So-called long-term longitudinal impacts that are of great strategic importance, require a 
different type of model which are undergoing widespread development at the moment.  This 
type of model will be discussed in another course.   

 

5.8 Balancing production and attraction 
If we take a sufficiently long period of time, the total number of departures calculated over 
all zones, should equal the total number of arrivals in all zones.  Separate models are used, 
however, to calculate productions and attractions. The total number of productions and 
attractions calculated with these models will, in most cases, differ slightly.  Matching the 
results, in order that the totals are equal, is called balancing productions and attractions. 

It is usually assumed that the calculated productions are more reliable than the calculated 
attractions.  This is due to the fact that housing is easier to predict than employment.  The 
total calculated production is, therefore, accepted as the correct value for the total number 
of trips T.  If Dj represents the attraction for zone j and J the total number of attraction 
zones, a proportionality factor f is determined: 

f T D j
j

J

=
=

∑/
1

 

All calculated attractions are now multiplied by the factor f.  
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Rather than balancing the productions and attractions of the entire OD-table at once, it can 
be done in stages. To do this, the area is divided into regions and the productions and 
attractions are balanced per region.   
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6 Distribution 
 
Using the production- and attraction models discussed in chapter 5 we determined the 
departures and arrivals for the various zones.  However, we still do not know the destination 
of the trips that depart from a particular zone, nor do we know where the trips that are 
attracted by a particular zone originated. 
 
The aim of a distribution model can now be described as follows: 

Distribute: 

• the trips that originate in a particular zone over all destinations 
• the trips with a destination in a particular zone over all origins 
 
The complete pattern of trips in the area of study can be represented in a so-called origin-
destination table or OD-table.  The aim of a distribution model, therefore, is to determine the 
OD-table for a particular forecast year. 

We begin this chapter with a discussion of the OD-table and the notation used. Next we 
give a very compact description of the basic problem of the distribution calculation and the 
principle of the methods we can use for its solution. 

We will then discuss two methods used for the distribution calculation: 

• In the first method we use the trip-data from an existing OD-table for a base-year as a 
guideline in order to distribute the future productions and attractions (determined in the 
production- and attraction model) over the new OD-table for the forecast year.  
Because the old trip data will, in fact, be raised with a growth factor, this model is called 
the growth factor model. 

• The second method does not use the existing trips between zones, but the level of 
travel-resistance or impedance between zones as the measure by which to distribute 
trips over the cells of an OD-table.  Since the resulting formulas somewhat resemble 
Newton’s law of gravitation, the name gravity model is often used.  Alternative names 
for the same model are interaction model and entropy model.  The term interaction 
model needs no further explanation.  The term entropy model came into use when the 
plausibility of the gravity model was demonstrated with help of the concept of entropy, 
known from physics and information theory.  Later on in the chapter we will show that 
the gravity model can also be seen as a variation on the growth factor model. 
 

Since the influence of resistance against travel is used in the gravity model, the concept of 
travel-impedance and the associated concept of a deterrence function will precede the 
discussion of the gravity model itself. Data from an existing OD-table (also called the base 
year matrix) is used to determine the influence of travel impedance.  The objective is to 
determine the shape of the so-called  deterrence function for the base year.  It is assumed 
that this deterrence function retains its relevance for the forecast year.  Determining the 
shape of the deterrence function is also called calibrating the gravity model.  We raise a few 
points regarding this kind of calibration in this chapter.  A more detailed discussion will be 
given in a follow-up course. 
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The chapter ends with a short discussion of a number of application aspects particular to 
distribution models. 

Lastly, we will confine ourselves in this chapter to so-called unimodal (single-transport 
mode) distribution models.  The distribution of trips over several transport modes (the modal 
split) will be discussed in chapter 7. 

 

6.1 Notation 
The pattern of trips in an area is usually given in a  number of so-called origin-destination 
tables or OD-tables.  Separate OD-tables tend to be used according to purpose (work, 
education for example), personal characteristics (whether a car is available or not, for 
example) and the modes of transport used (car and public transport, for example). 

Table 6-1  General form of an OD-table 

 Arrivals  
Departures 

 
1 2 j n Tij

j
∑  

1 T11 T12  T1n O1 
2 T21 T22  T2n O2 
i   Tij  Oi 
m Tm1 Tm2  Tmn Om 

Tij
i

∑  D1 D2 Dj Dn T Tij
ij
∑ =  

 
An OD-table is a two-dimensional matrix consisting  of m rows and n columns.  The rows 
represent the zones of origin and the columns the destination zones.  In most cases a 
particular zone is both a zone of origin and a destination zone.  This means that we usually 
have a square matrix, i.e.: m = n.  The cells of row i contain the trips that depart from zone i 
with the zone of the corresponding column j as destination.  The cells on the diagonal from 
top left to bottom right show the intra-zonal trips, the trips that start and end in the same 
zone. The other cells represent the inter-zonal trips, i.e. origin and destination are in different 
zones.  The number of trips from i to j (per time unit) is indicated by Tij. 

The sum of Tij over all columns in row i represents the total number of trips leaving zone i, 
which is indicated by Oi.  The sum of Tij over all rows in column j represents the total 
number of trips arriving in zone j and this is indicated by Dj. The sum of all trips in the entire 
table is indicated by T.  The total sum over the entire range of an index is described by 
placing the appropriate index below the summation sign.  Thus we can have the following, 
for example: 

 

T Oij
j

i∑ =  and T Dij
i

j∑ =  
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In the distribution problem the Tij are the unknowns.  The aim of a distribution model is 
precisely to determine these Tij.  The departures Oi and arrivals Dj act as (boundary) 
constraints. We get these departures and arrivals, for example, from an application of a 
production- or attraction model.  Depending on the situation, we speak of a doubly or singly 
constrained distribution model. 

• doubly constrained model: both departures and arrivals are known 
• singly constrained model:  either the departures, or the arrivals are known 
 

6.2 Basic problem of the distribution calculation 
For a doubly constrained distribution problem, i.e. the determination of an OD-table where 
the sums of the rows (the origins) and the sums of the columns (the destinations) are known, 
the following applies: 

T Oij
j

i∑ =  voor i = 1 … m 

T Dij
i

j∑ =  voor j = 1 … n 

This adds up to: m + n - 1 independent equations. 

(If we have set up m equations for the rows and n-1 equations for the columns, then the 
condition for the last (unused) column provides no additional information.  This is why there 
are m + n -1 independent equations.) 

The values to be determined are Tij for i = 1 … m and j = 1 … n.  Thus there are m*n 
unknowns. 

In a 10x10 table, for example, we only have 19 independent equations with which to 
determine the 100 cells of the matrix.  Thus, there are far more unknowns than equations, 
the system is undetermined.  There is an infinite number of solutions that satisfy the given 
boundary constraints.   

Which of these possible solutions is the correct one, or how will the trips from a particular 
origin distribute themselves over the destinations? 

It seems obvious to assume that the smaller the distance between an origin and a destination, 
the greater the volume of traffic attracted by the origin-destination pair.  In traffic 
engineering, we do not tend to speak of distances between an origin and a destination but of 
the more general concept of travel impedance. 

We have seen above, that the boundary constraints alone are not sufficient to calculate the 
OD-table.  We need additional conditions.  These additional conditions consist of 
information concerning the impedance between all origins and destinations.  How do we get 
information about the travel impedance between the origins and destinations?  In principle, 
there are two methods: 

• The first method uses the distribution of the trips in an existing matrix.  This is a known 
OD-table for a specific base year that serves as the starting point for the calculation of 
future distributions.  After all, the existing distribution of traffic over the OD relations is 
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the result of the distribution of travel impedances between the OD pairs.  A model 
based on this premise is called a growth factor model. 

• In the second method we explicitly determine the travel impedance between each OD 
pair.  Data from the base year matrix is then used to determine the influence of 
impedance on the distribution of trips.  The information thus gathered is then used to 
calculate the future distribution.  This type of method is called a synthetic method.  The 
best-known synthetic method is the gravity model. 

6.3 Growth factor models 
Assume that we have access to a base year matrix, possibly from a previous study or 
otherwise calibrated on the basis of recent data.  The aim is to determine an OD-table for a 
forecast year, say 10 years from now. 

Suppose that we also have at our disposal a growth factor for the traffic to be expected 
over the coming 10 years.  That growth factor can be based, for example, on expected 
economic growth.  The expected growth could apply to the entire study area, or we can 
have information regarding expected growth in production and attraction for the various 
zones in the study area.  Dependent on the available information we can distinguish a number 
of growth factor methods. 

6.3.1 Uniform growth factor 
If the information applies to a growth factor for the entire study area, we multiply each cell 
from the basic matrix by the growth factor.  This is the most primitive situation, only suited to 
a planning term of at most one to two years.  The method is also used when time or financial 
means are inadequate to carry out further research.  In most cases we will have access to 
growth factors that have been differentiated for each zone and that come, for example, from 
a previous production/attraction calculation. 

6.3.2 Singly constrained growth factor model 
Assume that we have information about the expected increase in trips for each origin zone.  
In this case, it is possible to apply the zone-specific growth factor to each row in the matrix.  
See Table 6-2 for an example.  An increase from 255 to 400 is predicted for zone 3.  We 
now multiply all trips in row 3 by a growth factor of g3 = 400/255.  The same applies to the 
other rows. 
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Table 6-2  Example of production-constrained growth factor 

 

6.3.3 Doubly constrained growth factor model  
This is a most interesting situation. The reader is advised to take good notice of the method 
used to solve this problem, because the same principle will return in the discussion of the 
gravity model. 

We now have more information both about the future number of trips that will be produced 
in the zones of origin, and about the number of future trips attracted by the zones of 
destination.  This leads to a growth factor of gi  per row of the OD-table and a growth 
factor of Gj per column.  Which growth factor should we take for cell ij?  An average 
growth factor (gi + Gj)/2 is not a good idea.  If we apply this kind of average growth factor, 
neither the constraint on the productions (row totals), nor the constraint on the attractions 
(column totals) will be met. 

In 1965, Furness suggested the following iterative method to obtain an OD-table for a 
forecast year.  First match the matrix with the expected future productions by multiplying 
each row by a (row specific) growth factor gi.  One will then find that the column totals do 
not agree with the expected attractions.  This is why we now multiply each column in the 
table that we obtained in the previous step by a new (column specific) factor Gj to achieve 
this goal.  It then becomes obvious that we need to apply new correction factors for the 
rows, etc. We now repeat this process of balancing until the correction factors for rows and 
columns converge to a value of 1.0.  See Table 6-3 for an example. 

 

 1 2 3 4 
j

∑  predicted 
Oi 

1 5 50 100 200 355 400 
2 50 5 100 300 455 460 
3 50 100 5 100 255 400 
4 100 200 250 20 570 702 

i
∑  205 355 455 620 1635 1962 

 
 1 2 3 4 

j
∑  predicted 

Oi 
1 5.6 56.3 112.7 225.4 400 400 
2 50.5 5.1 101.1 303.3 460 460 
3 78.4 156.9 7.8 156.9 400 400 
4 123.2 246.3 307.9 24.6 702 702 

i
∑  257.7 464.6 529.5 701.2 1962 1962 
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The algorithm of Furness can be defined as follows: 

Repeat  
Balance the productions; 
Balance the attractions; 

Until convergence 
 
It can be shown that this “Furness-process” will, in most cases, converge to a stable 
solution. 

If we summarise all successive multiplication factors of the Furness-process in the factor ai = 
gi1 * gi2 * …for the rows and bj = Gj1 * Gj2 * … for the columns, we can write the result of 
the iteration as follows: 

Tij = ai bj tij 

 
In this formula ai and bj are called balancing factors and tij is the a-priori OD-table or the 
base-year matrix. 

 

6.3.4 Disadvantages growth factor models 
Growth factor models pose the following problems: 

 1 2 3 4 
j

∑  predicted 
Oi 

1 5 50 100 200 355 400 
2 50 5 100 300 455 460 
3 50 100 5 100 255 400 
4 100 200 250 20 570 702 

i
∑  205 355 455 620 1635  

predicted 
Dj 

 
260 

 
400 

 
500 

 
802 

  
1962 

 
 1 2 3 4 

j
∑  predicted 

Oi 
1 5.2 43.6 97.2 254.0 400.0 400 
2 44.7 3.8 83.7 327.9 460.1 460 
3 76.7 128.7 7.2 187.4 400.0 400 
4 133.4 223.9 311.9 32.6 701.8 702 

i
∑  260.0 400.0 500.0 801.9 1961.9  

predicted 
Dj 

 
260 

 
400 

 
500 

 
802 

  
1962 

Table 6-3  Example of doubly-constrained growth factor 
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• New spatial developments for the study area cannot be accommodated. Although we 
can calculate the expected production and attraction, we have no suitable start values in 
the base year matrix.   

• The method depends heavily on the reliability of the data in the individual cells of the 
base year matrix.  Erroneous or unreliable data in one or more of the cells in the base 
year matrix can be reinforced through consecutive correction factors.  And, when 
observations for specific OD-cells are not available, their future value cannot be 
determined. 

• There are instances when problems can occur with the iteration process.  We noted 
above that the Furness-process usually converges to a stable solution.  However, when 
so-called zero-cells occur in the base year matrix, convergence is not always 
guaranteed.  See the example in Table 6-4.  The lower table shows the situation after 10 
iterations.  Convergence does not occur.  The problem occurs in the second row of the 
matrix.  Because of the desired column total, the only non-zero-cell is this row can never 
exceed 400.  It is therefore, impossible for the second row total to achieve 460.    

 
 

 
• A significant disadvantage of growth factor methods is their inability to incorporate 

changes in the transport system, in this instance the transport network.  Their application 
possibilities are limited, therefore, in research concerning the impact of new 
infrastructure, such as the introduction of alternative transport modes or the introduction 
of tariffs (toll collection, for example). 

 1 2 3 4 
j

∑  voorspelde 
Oi 

1 5 50 100 200 355 400 
2 0 50 0 0 50 460 
3 50 100 5 100 255 400 
4 100 200 250 20 570 702 

i
∑  155 400 355 320 1230  

voorspelde 
Dj 

 
260 

 
400 

 
500 

 
802 

  
1962 

 
 1 2 3 4 

j
∑  voorspelde 

Oi 
1 3.4 0.7 61.0 355.3 420.4 400 
2 0 388.2 0 0 388.2 460 
3 65.5 2.8 5.9 345.7 419.9 400 
4 191.1 8.3 433.1 101.0 733.5 702 

i
∑  260.0 400.0 500.0 802.0 1962.0  

voorspelde 
Dj 

 
260 

 
400 

 
500 

 
802 

  
1962 

Table 6-4  Example of a non-converging Furness process.2 



 

 

62 

6.4 Travel impedance and the deterrence function 
We have seen that growth factor models have limited applicability. There is a need for 
distribution models that describe trip behaviour in a more fundamental way.  The best 
known of these so-called synthetic models is the gravity model.  Before we undertake a 
factual description of the gravity model, it is necessary to deal with the concepts of travel 
impedance and the related deterrence function. 

6.4.1 Travel impedance 
The effort involved, or the resistance against undertaking a trip is called travel impedance. It 
would seem obvious to express this impedance simply in terms of the travel time or distance 
involved.  Things are not that simple as can be explained by an example. 

 

Take the trip between Tilburg in The Netherlands and Leuven in Belgium.  Assume that someone 
wants to travel by car from Tilburg to Leuven.  There are two fairly good routes: 

• Tilburg-Breda-Antwerp-Brussels -Leuven.  This route entirely follows motorways.  The length is 
about 135 km.  If there is no serious congestion near Antwerp or Brussels, an average speed of 
90 km/hour is attainable.  In that case, the trip takes 1.5 hours. 

• Tilburg-Turnhout-Geel-Aarschot-Leuven.  This route follows the N9.  It is about 100 km long.  Some 
parts of the roads are very good and can be travelled at 70 km/hour.  Other parts of the route, 
however, travel through the centres of towns and villages, which causes considerable delays.  The 
average speed achieved over the entire trajectory of this route may be about 
50 km/hour.  Travel time, therefore, is 2 hours. 

 
Which of the two alternatives for the car-drive Tilburg-Leuven offers the least impedance?  In other 
words, which will be the most attractive to the driver? 

Let’s compare travel-costs first.  For the sake of simplicity, we only look at the cost of fuel.  From 
this point of view, the journey via the N9 is preferable.  The distance is shorter and, due to the 
lower speeds, fuel-use per kilometre is relatively low. 

Next, we compare travel times.  In this case, the trip via Antwerp and Brussels is obviously 
preferable. Travel time is half an hour shorter.  And the traveller also attaches a certain value to this 
gain in travel time.   

Other factors such as safety or scenery contribute to the assessment of travel impedance of a route.  
Assessing such factors is very subjective.  When it comes to safety,  the journey via Antwerp-
Brussels probably wins, but many will prefer the trip through the Mid-Kempen for its natural 
beauty. 

The example shows that assigning a travel impedance to a trip is a difficult problem. 

 

Usually the assessment of travel impedance is confined to (monetary) cost and time 
elements.  Other factors are left out, or, if possible, reduced to cost or time elements. 

Monetary costs involved in a car trip are, for example, parking, petrol and toll costs. Costs 
incurred in travel by public transport can include ticket prices and parking the bicycle.  In 
addition to these so-called variable costs, fixed costs such as amortisation costs for a car or 
the costs for a season ticket for public transport can also be included.   

Travel times for a trip per car are, naturally, the driving time, but also the time spent looking 
for a parking place and the times spent walking to and from the car park.  Of importance in 
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public transport are the travel times in the vehicle, the travel time getting to and from the 
station, waiting times and transfer times. 

The total impedance of a trip from i to j via route r for a specific transport mode can be 
written as a linear combination of the experienced subjective time duration Tij

r and monetary 
costs Kij

r.  The minimum of this expression calculated over all possible routes is the travel 
impedance cij between i and j. 

c T Kij r ij
r

ij
r= +min( )γ  

Here the value of time γ  is expressed in money-units per time unit (euro/hour, for 
example).  The value of time γ indicates that the traveller is prepared to pay γ  money-units 
for a saved time-unit of travel time.  In the formula, the monetary costs Kij

r have been 
converted to time units via the y.   The customary phrase is to say that the travel impedance 
is expressed in generalised time.  The unit used is, for example, minutes. The term “cost-
minutes” is sometimes used to make a clear distinction between “normal” time units and 
generalised time units.  (The travel impedance can also be expressed in generalised 
(monetary) costs.   For the sake of interpretation the expression in time units is preferable; 
the effort in making a journey is usually associated with a time duration.) 

The value of γ depends on the person (the income of the traveller plays an important role) 
and on the purpose of the trip (the appreciation of the value of time in commercial traffic is 
noticeably higher than in other traffic).  An accepted average value for γ is about 5 
euro/hour.  This value can increase three- or fourfold for commercial traffic. 

In the travel impedance formula above Tij
r and Kij

r are subjective travel times and monetary 
costs.  In public transport, for example, a minute of waiting time is experienced as a greater 
nuisance by the traveller than a minute of effective riding time in the vehicle.  Something 
similar happens with monetary costs.  Out-of-pocket costs such as parking fees affect the 
traveller more than hidden costs such as petrol costs.  To express this difference in 
perception, the duration times ts and costs ks of the various components s which together 
make up the journey from i to j via route r are multiplied by the weighting factors αs and β s: 

T tij
r

s
s

s= ⋅∑α   en  K kij
r

s s
s

= ⋅∑β  

There often is insufficient information to assess the value of the weighting factors, which is 
why they are often set equal to 1.  In public transport, however, some research has been 
carried out into the weighting of travel time components.  The travel time for a trip by public 
transport is composed of the following components: effective riding time in the vehicle, 
travelling time to and from the terminal, waiting time and transfer time.  The following factors, 
for example, have been used in the traffic models for Flemish Brabant:  

 

component  s αs 
riding time in vehicle 1.00 
time to and from terminal 1.65 
waiting time 1.50 

Table 6-5  Weighting of travel time public transport (Fl. Brabant) 
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When in public transport the journey also requires transfers, then, besides the time spent 
waiting and walking, the traveller also experiences annoyance regarding the break in the 
journey itself.  Extra terms in the impedance formula can also be introduced for this aspect.  

From now on we will indicate the travel impedance between two places i and j by the 
generalised travel time cij and assume that all applicable components have been properly 
accounted for.  If we want to distinguish between a number of transport modes we will add 
the index m (for modality).  We then use the notation cij

m
,  which indicates the impedance 

between i and j for transport mode m. 

6.4.2 Deterrence function 
Assume that the total number of departures (the trip production) from a zone of origin is 
known.  We want to find out how these trips will distribute themselves over the possible 
destinations.  It is intuitively clear (and it appears from empirical research) that the number of 
trips to a destination decreases as the distance (or rather the travel impedance) to that 
destination increases.  This travel impedance effect on the distribution of trips is expressed 
by the deterrence function F(cij) . Separate deterrence functions are applied depending on 
the purpose of the trip, on personal characteristics and, as will become clear in chapter 7, on 
the mode of transport.   

Over the years, many mathematical forms have been proposed for the deterrence function.  
Originally it was assumed that the number of trips would decrease in proportion to the 
square of the distance, inspired, no doubt by Newton’s law of gravitation.  Observations, 
however, did not confirm that hypothesis.  Later on travel impedance was used instead of 
distance, while other exponents in the negative power function were tried. Further on in this 
chapter we will show that, based on theoretical considerations, the shape of the deterrence 
function can be approximately described by a negative exponential function, at least over a 
limited range of the travel impedance.  Some functions that have been used are: 

 

F c cij ij( ) = −α    negative power function 

 
F c eij

cij( ) = −β    negative exponential function 

 
F c c eij ij

cij( ) = ⋅− −α β   combined power- and exponential function 

 
Parameters α and β   in the functions above are determined through calibration using 
observations from the study area.  The general shape of the functions for some values of the 
parameters is given in Figure 6-1. 
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Although often used, the negative exponential function has a disadvantage.  The same 
absolute increase in travel impedance at low values of the travel impedance has the same 
relative effect on the trips as at a high travel impedance.  This does not confirm to our 
intuition.  One would expect, for example, that an increase in travel impedance from 5 to 10 
minutes would have a relatively larger effect than an increase from 120 to 125 minutes.  It 
will, therefore, usually only be possible to fit a negative exponential function to empirical data 
over a limited range of the travel impedance.  (See also example 1 in chapter 3.5.) 

Sometimes a deterrence function does not decrease monotonously across the entire range of 
the travel impedance.  In the case of car trips, for example, the value of the deterrence 
function starts at a low level, reaches a maximum, and only then decreases with increasing 
travel impedance.  The reason is that the tendancy to use the car for very short distances will 
generally be low.  Walking or cycling is then a preferable choice.  In such cases it is 
sometimes possible to use a combination of power function and exponential function to 
describe the data. 

It is of course not at all necessary to write the deterrence function in a closed mathematical 
form.  By enumeration (or table lookup) we can also define a function. In that case the 
function value associated with each argument of the function is specified.  In practice this can 
be done, for example, by storing the deterrence function value (sometimes called a friction 
factor) for a number of discrete values of the argument in a table (a friction factor table) and 
to assume that the function value in an interval around a discrete value remains constant. One 
can also apply an interpolation-technique in the interval around the discrete value.  

F(cij)

 cij

 cij
-0.4

cij
0.5exp(-0.12cij)

exp(-0.05cij)

 

Figure 6-1  Some analytical deterrence functions. 



 

 

66 

 

6.5 Gravity model 
Having introduced the concepts of travel impedance and deterrence function, we will now 
proceed with our examination of distribution models.  The gravity model to be discussed in 
this section is strongly related to the growth factor models we studied in a previous section.  
In the growth factor models we used an existing a-priori matrix to measure the influence of 
the travel impedance on the number of trips to the various destinations.  In the gravity model 
we use the value of the deterrence function as a measure for the influence of impedance on 
the expected number of trips between origins and destinations. 

6.5.1 Principle of the gravity model 
The best way to explain the gravity model is by way of an example.  Table 6-6 is an OD-
table where the margins show the productions and attractions that have been predicted using 
a production and attraction model.  The problem is to enter trips in the OD-table in order to 
meet the constraints.   

 

 

Table 6-6  Boundary constraints gravity model example.2 

 

The following table contains the travel impedance cij between all origins and destinations, 
expressed for example in minutes of generalized time. 

 

 
Assume that, based on data from a base-year matrix, we calibrated the following deterrence 
function. 

Boundary constraints 
 1 2 3 4 predicted 

Oi 
1     400 
2     460 
3     400 
4     702 
predicted 
Dj 

 
260 

 
400 

 
500 

 
802 

 
1962 

Impedance cij (minutes) 
 1 2 3 4 
1 3 11 18 22 
2 12 3 13 19 
3 15.5 13 5 7 
4 24 18 8 5 

Table 6-7  Impedance table gravity model example.2 
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F c eij
cij( ) .= −0 1  

For every cell in the matrix we calculate the value of the deterrence function, obtaining a 
table of so-called friction factors. We now start the balancing process as shown in Table 
6-8.  This table gives the relative proportions between the number of trips in each cell of the 
OD-table that is to be estimated 
 

 
In order to achieve an OD-table that complies with the constraints we apply the Furness 
iteration process to the starting matrix in Table 6-8, in the same way as described in the 
growth factor method.  The end-result is given in Table 6-9. 

 

 
If we summarise all successive multiplication factors of the Furness process in the factor ai 
for the rows and bj for the columns, we can write the results of the iteration as follows: 

T a b F cij i j ij= ( )  

This is the usual formulation of the doubly constrained gravity model.  Note that it resembles 
the growth factor model.  Again, we call ai and bj balancing factors and F(cij) is the 
deterrence function, obtained by calibration from the data in the base-year matrix.  
Completely analogous to the singly constrained growth factor model, we can also deduce 

Starting matrix = Friction factor table F(cij) = exp (- 0.1 cij) 
 1 2 3 4 

j
∑  predicted 

Oi 
1 0.74 0.33 0.17 0.11 1.35 400 
2 0.30 0.74 0.27 0.15 1.49 460 
3 0.21 0.27 0.61 0.50 1.59 400 
4 0.09 0.17 0.45 0.61 1.32 702 

i
∑  1.34 1.51 1.53 1.37 5.75  

predicted 
Dj 

 
260 

 
400 

 
500 

 
802 

  
1962 

Table 6-8  Friction factor table gravity model example.2 

Verplaatsingen Tij berekend met het zwaartekrachtmodel 
 1 2 3 4 

j
∑  ai 

 
1 157 98 69 76 400 410.0 
2 59 204 101 96 460 379.5 
3 25 45 138 192 400 229.0 
4 19 53 192 438 702 428.7 

i
∑  260 400 500 802 1962  

bj 0.52 0.73 0.99 1.68   

Table 6-9  Results gravity model example.2 
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the singly constrained gravity model.  In that case aij = 1 ór bij = 1, and a Furness iteration 
process is not necessary. 

 

6.5.2 Observations regarding the gravity model 

6.5.2.1 The values of the deterrence function and the balancing factors 
Only the relative magnitudes of the values in the deterrence function matter, not the absolute 
values.  This also applies to the balancing factors ai and bj.  If we start the Furness iteration 
process by balancing the columns instead of the rows, we will get different balancing factors.  
The ratios between the ai as well as between the bj, however, remain the same. 

Another way to express this is as follows: the balancing factors and the value of the 
deterrence function are determined up to a constant factor; multiplying, for example, the ai 
with a constant factor changes nothing in the result provided that we divide the bj, the F(cij) 
or the product of both, by the same constant factor. 

 

6.5.2.2 Alternative formulations for the gravity model 
In the literature we might find different mathematical expressions for the gravity model.  
Examples are: 

 

T A O B D F cij i i j j ij= ( )   and T l Q m X F cij i i j j ij= ( )  

 
In the first expression, Oi and Dj represent departures from zone i, respectively arrivals in 
zone j.  The formula arises by writing ai as Ai Oi  and bj as Bj Dj.  The original balancing 
factors ai and bj have been replaced by the new balancing factors Ai and Bj.  This is not 
particularly useful.  But it is understandable.  One would like to interpret the gravity model as 
a model that describes the trips between an origin and a destination as a function of the 
characteristics of that origin and destination and the travel impedance between them.  
Because the balancing factors ai and bj are difficult to interpret as characteristics of origins 
and destinations, one resorts to departures and arrivals.  This does not help much because 
new balancing factors Ai and Bj are now required, and their interpretation is as difficult as 
the original ai and bj 

In the second expression one does not use departures or arrivals but other variables Qi and 
Xj that are designated as the “polarities” of the zones of origin and destination.  The idea is 
that the polarity is a characteristic for a zone and that it describes a zone’s capacity to 
generate trips, respectively to attract them. We still need the balancing factors li and mj . 

 

6.5.3 Theoretical derivations of the gravity model 
We have seen that the gravity model can be considered as an extension of the growth factor 
model with the associated Furness procedure.  Although at first nothing seems to be wrong 
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with the Furness procedure, there are come conceptual problems.  This can be understood 
as follows. 

The starting point of the entire procedure was that trip behaviour could be described by a 
deterrence function that gives the influence of travel impedance on the number of trips.  In 
the first iteration we distributed the total number of departures from a zone over the 
destination zones proportional to the values of the deterrence function.  This proportionality 
is disturbed in the next iteration, when the column totals must be matched to the calculated 
attractions.  After convergence of the Furness procedure proportionality of the trips with the 
values of the deterrence function over the entire OD-table is gone.  This can be checked in 
the examples in Table 6-8 and Table 6-9.   We cannot harmonise the trips in the entire OD-
table with the deterrence function value for each cell and  comply with the constraints at the 
same time. 

This shows that the Furness procedure can, at best, be seen as a compromise between, on 
the one side, optimum proportionality to a deterrence function value and, on the other side, 
complying with the constraints posed by the calculated productions and attractions.   

Due to the unstable theoretical basis of the gravity model as based on the Furness 
procedure, one has sought other arguments to prove the validity of the gravity model. 

We will very briefly discuss two alternative arguments for the validity of the gravity model, 
namely a derivation based on the theory of entropy, known from physics and information 
theory, and a derivation based on discrete choice theory. 

6.5.3.1 Derivation gravity model from the principle of maximum entropy 
Assume that we have to estimate an OD-table based on given marginal sums of the table 
(sums of origins and destinations).  The problem is that very many (in fact an infinite number 
of) OD-tables will match the given marginal sums.  Figure 6-2 shows an example. 

All these possible OD-tables, however, do not have the same probability of occurrence.  
We now assume that the particular OD-table will arise that has the greatest probability of 
being realised.  Using terminology from physics and information theory we can say that we 
are looking for the OD-table with maximum entropy. 

The number of ways in which we can divide T trips over an OD-table in such a way that the 
distribution over the cells is Tij, is: 

W T
T
Tij

ij
i j

( )
!

!
,

=
∏

 

(This is the multi-nominal formula known from probability theory) 

5 0 5
1 2 3
6 2 8

4 1 5
2 1 3
6 2 8

3 2 5
3 0 3
6 2 8

 
Figure 6-2  Different OD tables with the same marginal sums. 
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Now our task is to find the OD-table with Tij such that: 

W(Tij)  is maximal (the OD-table can arise in the maximal number of ways; i.e. has a 
maximal probability to arise) under the constraints: 

T O

T D

ij
j

i

ij
i

j

∑

∑

=

=
 

If we solve this maximisation problem we do not distinguish between tables Tij with many 
trips on a relation with great travel impedance or many trips on a relation with a small travel 
impedance.  To make all OD-tables comparable we add a condition concerning total trip 
costs across the entire matrix: 

T c Cij
ij

ij∑ =  where C is a constant 

Solving this maximisation problem (using Lagrange multipliers) leads to: 

 

T A O B D eij i i j j
c ij= −β  (where β  is related to C) 

 
This is the gravity model with a negative-exponential deterrence function.  When calculating 
the total trip costs, the long-distance trips in the condition T c Cij

ij
ij∑ =  are as important as 

short-distance trips; if we write the condition in the more general form T g c Cij ijij
( ) =∑ , 

where g is a monotonously increasing function of cij, we obtain one of the common 
formulations of the gravity model: 

Tij = Ai Oi Bj Dj f(cij)  

6.5.3.2 Derivation gravity model from discrete choice theory 
Because the distribution problem is essentially a problem of choice of origin and destination, 
we can apply the discrete choice theory that was dealt with in chapter 3. 

The individual utility Ui,j
p for person p of the choice of i as origin, j as destination and 

making a trip from i to j consists of a number of components: 

Ui,j
p = Vi

p + Vj
p + Vij

p + ε ij
p 

where: 

Vi
p the observable utility for person p of an activity in i  

Vj
p the observable utility for person p of an activity in j  

Vij
p the observable utility for person p of making the journey from i to j 

ε ij
p an error term; accounts for the effect of non-observed attributes 
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The utilities Vi
p and Vj

p are the results or positive effects that arise out of the choice of places 
i and j as origin and destination.  The utilities are related to the activities that are carried out 
in i and j (for example, living in i and working in j).  The term Vij

p on the other hand 
represents the effort or the negative effect of the journey from i to j.  The term Vij

p, 
therefore, will have a negative value and this value will decrease further as the effort to be 
overcome in the journey increases. 

We now apply an aggregation step, and assume that the individual utilities may be replaced 
by an average utility per person across the entire zone: 

Ui,j = Vi + Vj + Vij + ε ij 

If we assume that the ε ij are identical and independently Gumbel-distributed, a logit model 
applies for the probability that a trip from i to j will be made: 

Pr( ) /ij e eV V V V V

alle i j

i j i j i j= + + + +

′ ′

′ ′ ′ ′∑Vij  

If we assume that T represents the total number of trips in the entire OD-table, then the 
expected number of trips from i to j is: 

 

T ij T e e e
T

eij
V V V

V V V

i j

i j ij

i j i j
= ⋅ = ⋅ ⋅ ⋅

′ ′ ′ ′+ +

′ ′∑
Pr( )  

 
The last factor in this expression equals a constant, say K.  The constant factor has the effect 
of a scaling factor that ensures that the calculated trips agree with the total number of trips in 
the OD-table.  After the substitution of variables: 

 
exp (V i) = a′i   exp (V j) = b′j  
 
follows: 
 
T K a b eij i j

Vij= ′ ′  

 
The scaling factor K can be included in the factors a′i en bi′ without loss of generality.  This 
leads to: 

 
T a b eij i j

Vij=  

 
This, in essence, is the gravity model in its most general formulation.  We can further 
elaborate the formula above, by taking a closer look at the utility of a trip Vij. 

The utility Vij will be a (generally monotonously decreasing) function of the travel impedance 
between i and j. 

 
V f cij ij= ( )  



 

 

72 

 
After substitution of exp(f (cij))   by F(cij), we obtain the well-known form of the gravity 
model: 

 
T a b F cij i j ij= ( )  

 
If the negative valuation of the trip is one of “costs” and if the travel impedance cij is more or 
less proportional to the distance or the travel time between i and j, the function for the 
disutility will approximate a linearly decreasing function:  

 
V cij ij≈ −β   (β  > 0) 

 
In that case the gravity model with an exponential deterrence function arises: 

 
T a b eij i j

cij≈ −β  

 
Given the substantial amount of simplifying assumptions made (namely the assumptions 
inherent in the logit model and the aggregation step) it is not surprising that the gravity model 
merely gives an approximate description of the distribution.    Substantial differences can, 
indeed, arise between observations and values calculated by the gravity model, particularly 
when detailed comparisons are made at the level of particular origins and destinations.  In 
general, however, and taken across the entire OD-table, the observations and model values 
match reasonably well in practice. 

 
 

6.5.3.3 Conclusions theoretical derivations 
 
We have seen that the gravity model is essentially based on a Furness iteration procedure 
where the deterrence function values are used as start values.  In addition, the gravity model 
can be derived using the principle of entropy or from discrete choice theory.  These 
derivations do not prove the “correctness” of the gravity model as such, but they increase 
our confidence in its correctness.  The predictive value of the gravity model should really be 
established by strictly controlled experiments, as is done in the natural sciences.  
Unfortunately, such a procedure is hardly ever possible in the socio-economic sciences.  
(Traffic science, traditionally seen as an engineering discipline, has much common ground 
with the socio-economic sciences.) 

 

6.5.4 Calibration of the deterrence function 
When we discussed the deterrence function, we noted that determining the parameters in 
that function must be done through calibration with available observations for the study area.  
In this course, we will confine ourselves to a few introductory remarks about the calibration 
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process.  For those interested in a more in-depth treatment of this subject, we refer to a 
future follow-up course.   
 
Assume that an OD-table with observations is available for a base-year. Assume that a 
distribution model is applicable to this OD-table, for example the gravity model discussed in 
this chapter: Tij = ai bj f (cij) 
 
Parameters in this distribution model are ai, bj and the parameters in the deterrence function  
f.  To calibrate the deterrence function now means: determine the parameters in the 
distribution model in such a way that maximum agreement is achieved between the observed 
OD-table and the OD-table that has been calculated by the distribution model.  A much-
used term in this context is “best fit” of distribution model and observations. 
 
How can the parameters be determined in order to achieve a best fit?  An obvious method 
is “trial and error”.  We make an initial estimation of the parameters based on insight and 
experience.  We then carefully try to adjust the parameters to improve the match.  In 
practice, however, this is a very time-consuming method.  We need a more systematic way 
to carry out the calibration.  
 
Many calibration methods have been proposed over the years.  One of the most efficient 
methods is based on the maximum likelihood principle, a well-known statistical estimation 
method.  An example of this method is the so-called Poisson-estimator that will be dealt 
with in a future course.   
 
In the previous section we assumed that we had access to an observed OD-table for the 
calibration.  In many cases, however, we have no observations for the cells in the OD-table, 
although we do have counts on the links of the network; vehicle counts, for example, on 
several road sections.  Depending on the route choice of the travellers a number of OD-
relations can use the same link in the network.  We must then reconstruct the OD-table as it 
were, using a route choice model.  Route choice models are dealt with in the chapter about 
assignment.  Calibration using counts on network links is dealt with in a follow-up course.    
 

6.6 Application aspects of distribution models 
We conclude this chapter about distribution models with a short discussion of a number of 
practical application aspects. 

6.6.1 Intra-zonal traffic 
Intra-zonal traffic consists of trips that have their origin and destination inside the same zone.  
This contrasts with inter-zonal traffic with origin and destination in different zones.  We use 
the travel impedance between the centroids of the zones involved for the inter-zonal trips, 
whereby traffic is assumed to travel via the model network.  The traffic enters and leaves the 
model network via the connectors.  Intra-zone trips, on the other hand, do not use the 
network.  Thus travel impedance between origins and destinations are not known. This can 
lead to problems because, due to their short distance, the volume of intra-zonal trips 
tends to be large.  There are two approaches to address these problems: 
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• Use small zones and possibly do not include the intra-zonal traffic in the distribution 

model. 
• Approximate the intra-zonal impedance levels, for example as a function of the zone 

area or as a function of a characteristic diameter of the zone.   
 

6.6.2 External zones 
When applying a distribution model, the levels of impedance between the zones must be 
known.  This generally applies to the zones in the study area, the internal trips.  A substantial 
part of the traffic will, however, have its origin or destination outside the study area.  It is 
also possible that both origin and destination lie outside the study area, though these trips 
traverse the study area.  The travel impedance to and from these external zones (also called 
the area of influence or external area) is harder to define. 

A possible approach to this problem is to calculate the internal trips by a synthetic 
distribution model (the gravity model, for example) and to use a growth factor model for the 
remaining trips.  The data necessary for this purpose can be obtained from counts on a 
cordon (a closed circle) situated around the study area. 

6.6.3 Conversion of the OD-table to suitable units 
The results of the distribution calculation serve as an input into the next phase of the traffic 
demand model, namely assignment.  Distribution models usually deal with personal trips.  
These can be trips per day, peak-period trips or trips aggregated over some other time unit. 

In an assignment model for car traffic one will need, for example, data on vehicle trips/hour 
during the peak period.  Factors such as degrees of vehicle-occupation and peak-hour 
coefficients are used to carry out a simple conversion to suitable units. 

 

 

 

 

 



 

 

75 

7 Transport mode choice 
 
The different phases in the traditional traffic demand model show a logical sequence. First 
the production- and attraction model is used to determine the number of trips that can be 
expected.  Then the distribution model is used to establish where these trips go, in other 
words origins and destinations are determined.  The assignment phase, which will be dealt 
with in chapter 8, calculates how the trips take place in practice, with the emphasis on the 
route choice process. 

Going somewhere not only involves a choice of route but also a choice of transport mode. 
The distribution of trips over the various transport modes is called the modal split.  
Modelling transport mode choice is one of the classical problems in traffic engineering. 

The various modalities include walking, cycling, driving, public transport and perhaps some 
other possibilities depending on local customs. Due to the high social relevance of this 
theme, the emphasis usually is on the choice problem between car and public transport.  
Because of road network congestion and environmental degradation caused by road traffic, 
the relevant policy-making agencies usually aim to encourage use of public transport.  It is 
very important, therefore, to have models that are sensitive to the attributes that influence the 
choice of transport mode.   

We begin this chapter with a short overview of those factors that have a determining effect 
on transport mode choice. 

Over the years, the place of the transport mode choice model within the traditional traffic 
demand model has changed quite a bit.  It was originally thought that transport mode choice 
had to be modelled as part of production and attraction.  In doing so, however, the network 
characteristics are unable to influence the transport mode choice.  Thus, it became 
preferable to incorporate the transport mode choice in the distribution phase.  We will 
discuss these so-called simultaneous and sequential choice models for distribution and 
transport mode choice at length. 

7.1 Factors that influence transport mode choice 
Many factors influence transport mode choice.  First and foremost there is the availability of 
the various means of transportation.  People who have no choice but to use one or other 
transport mode are called captives of that transport mode. 

The word captives is most often used in connection to public transport.  When a household 
has no access to a car while the destination is too far away to cycle or walk, and when 
family income does not stretch to car hire or taxi, the family member is said to be a public 
transport captive. 

However, it is also possible that there is no provision of public transport to a destination, or 
the nature of a job is such that public transport does not apply.  In such cases, people 
necessarily depend on cars and become car-captives. 

Those people who are not captive to one or other form of transport are called choice-
travellers.  It is assumed that these travellers base their choice of transport mode on rational 
considerations.  The factors that play a role in this process can be divided into three groups: 
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• Traveller characteristics  It appears that there is a connection between transport mode 
choice and socio-economic characteristics such as profession, income, age, etc.  The 
most significant characteristic is car availability.  This characteristic is closely connected 
to the above mentioned socio-economic characteristics. 

• Transport mode characteristics  In this group of characteristics the differences in 
travel time and costs between the transport modes are particularly important.  However, 
factors such as parking opportunities and comfort, safety, and reliability also feature. 

• Trip characteristics  The purpose of the trip plays a role here.  People might use public 
transport for the recurrent home-based work trip, and use the car to go shopping.  The 
point in time at which the trip is undertaken is also of significance. 

 
Any traffic model that is intended to represent the transport mode choice accurately should 
really be sensitive to most of the factors above.  In practice however, most applications 
confine themselves to travel impedance in the mode choice model.  We refer to the chapter 
on distribution for a discussion of the concept of travel impedance. 

 

7.2 Transport mode choice as part of production/attraction calculations 
In the past, especially in the US where the first developments of the traditional traffic 
demand model happened, the calculation of the transport mode choice was a part of the 
production- and attraction model.  Productions and attractions are also known as trip-ends.  
This is why these modal split models are also called trip-end modal split models. 

The reason that the calculations were carried out in the production-attraction phase was 
because the transport mode choice, which was mainly considered to be a choice between 
car and public transport, was primarily determined by personal characteristics such as 
income.  In some cases, the extent of the availability of public transport services was added 
in the form of a kind of accessibility index.   

The disadvantage of the calculation of the modal split during or directly after the production- 
and attraction phase is that the destinations of the trips are not yet known at this stage.  This 
means that the network characteristics cannot yet be included in the model.  As a 
consequence, these models do not respond to policy decisions, such as, for example, 
improvements to the public transport network.  This is the main reason why trip-end modal 
split models are no longer used. 

 

7.3 Transport mode choice as part of the distribution calculation 
When the calculation of the transport mode choice is done as part of the distribution 
calculation, one speaks of trip-interchange models.  Carrying out the modal split calculation 
in combination with the distribution is a logical option.  The disadvantage of trip-end models 
is absent, since trip characteristics such as travel time can now be included in the calculation 
of the transport mode choice. Destination choice and transport mode choice are, moreover, 
closely connected.  These kinds of models have, therefore, become widely used. 
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7.3.1 Simultaneous model distribution/transport mode using multi-modal gravity 
model 

 
The gravity model that we used to calculate the distribution can be adapted so that 
assignment over the transport modes is simultaneously calculated. 

In chapter 6 about distribution we learned that the gravity model for one mode of transport 
(a uni-modal gravity model) can be derived using the concept of entropy or using the logit 
model that originates from discrete choice theory.  When there is a choice of transport 
modes between the same origin and destination it is possible to derive a multi-modal 
version of the gravity model.  We will illustrate this by a derivation using the logit model. 

The choice set for the logit model in the uni-modal gravity model consisted of all pairs of 
origins and destinations.  When there is a choice between several transport modes we get an 
enlarged choice set because one or more transport modes must now be included per origin-
destination pair. 

If we assume, as we did in the derivation of the uni-modal gravity model, that the individual 
utilities can be replaced by a mean utility per person across the entire zone, the following 
expression arises for the utility of the choice of i as origin, j as destination and the 
undertaking of a trip from i to j using transport mode m: 

 
Ui,j

m = Vi + Vj + Vij
m + ε ij

m 
 
With 
Vi the observable utility for an activity in i (living, for example) 
Vj the observable utility for an activity in j (working, for example) 
Vij

m the observable utility of travel from i to j by modality m 
ε ij

m a stochastic error term (effect of unobserved attributes) 
 
The difference with the derivation for a single transport mode is the addition of the index m 
for the various transport modes between i and j.  If we accept that the error terms ε ij

m are 
identical and independently Gumbel-distributed (unavoidable assumptions for the logit 
model), we can derive as we did in the uni-modal case: 

 

T a b eij
m

i j
Vij

m

=  

 
Similar to the uni-modal case, the utility Vij

m represents the “effort” involved in making a trip 
from i to j using transport mode m.  The greater the effort, the smaller the value of Vij

m.  The 
effort will be a function of the travel impedance experienced by using transport mode m 
between i and j.  It is very likely, moreover, that the functional form will depend on the 
transport mode, hence the addition of index m to the function f: 

 
V f cij

m m
ij
m= ( )  
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After substitution of exp( ( )f cm
ij
m  by F cm

ij
m( )   we eventually get: 

 
T a b F cij

m
i j

m
ij
m= ( )  

 
thus: 
 
T T a b F cij ij

m
i j

m
ij
m

m ijm ij
= =′ ′ ′

′ ∈′ ∈
∑∑ ( )  

 
In words: the distribution of the transport flows across the various transport modes m 
between an origin i and a destination j is proportional to the values of the deterrence 
function Fm(cij

m)  for those transport modes. 

A critical point in this derivation is the assumption regarding the independence of the error 
terms ε ij

m.  Since a number of alternatives in the choice set apply to trips between identical 
origins and destinations, this independence may be doubtful.  On the other hand, if one 
accepts that the variance in the total utility largely arises from the differences in perception 
between the trip impedances, the assumption of independence in the error terms may be 
justified after all. 

Thus far, we assumed that all the alternatives in the choice set are simultaneously available.  
There is a simultaneous choice for destination and transport mode.  This is why this model is 
called a simultaneous choice model for distribution and transport mode. 

Another option is to assume a choice hierarchy.  This could be a choice of destination first 
and only when this choice has been made, a choice for transport mode.  This leads to an 
hierarchical or sequential choice model for distribution and transport mode, which is the 
subject of the next paragraph 7.3.2. 

The simultaneous multi-modal gravity model assumes the availability of separate deterrence 
functions per transport mode.  Since deterrence functions usually need to be further 
differentiated according to trip purpose and personal characteristics, a set of deterrence 
functions is required before a calculation with the gravity model can be carried out.  If one 
distinguishes, for example, between the personal characteristic “car-available” and “car-not-
availabe”, the trip purposes “work” and “other" and the modalities “car”, “public transport” 
and “bicycle”, one needs a set of 12 deterrence functions. 

 

Example of a calculation using the multi-modal gravity model: 

 

Assume that there are three zones A, B, and C.  The available transport modes for all 
relations are car, bicycle and public transport.  We do not differentiate as to purpose or 
personal characteristics. 

The marginal constraints, calculated by a production- and attraction model, are given in 
Table 7-1.  The task is to insert trips per transport mode in the Table. 



 

 

79 

 
Marginal constraints (car, bicycle and public transport combined!) 
 A B C predicted 

Oi 
A    100 
B    100 
C    200 
predicted  
Dj 

 
200 

 
150 

 
50 

400 

Table 7-1  Marginal constraints multi-modal gravity model example 

 

We need the deterrence functions per transport mode.  The values of the deterrence 
function per transport mode (friction factors) are given in the OD-Table 7-2. 

 
Friction factors Fij

m(cij
m) 

  A B C 
 car 20 10 2 
A bicycle 10 5 1 
 public transport 4 3 1 
 car 10 20 5 
B bicycle 5 10 2 
 public transport 3 4 2 
 car 2 5 20 
C bicycle 1 2 10 
 public transport 1 2 4 

Table 7-2  OD-table with friction factors per transport mode 

 

We now have all data needed to calculate the OD-table per transport mode. It is more 
correct to say that we will determine three OD-tables: one per transport mode.  We must 
first aggregate the values of the deterrence function per OD-pair  This gives the results in 
Table 7-3.   

Now, as was done in chapter 6.5.1, the table is used as a starting matrix for the Furness-
process. 
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Aggregated friction factors F cij
m

m ij
m∑ ( )  

 A B C 
j

∑  predicted 
Oi 

A 34 18 4 56 100 
B 18 34 9 61 100 
C 4 9 34 47 200 

i
∑  56 61 47 164  

predicted 
Dj  

 
200 

 
150 

 
50 

  
400 

Table 7-3  Friction factors aggregated by transport mode 

After a number of iterations of the Furness-process we then find the total number of trips 
calculated by the gravity model.  The trips in Table 7-4 are the sums of the trips across all 
transport modes. 

Trips (all modes) by gravity model 
 A B C 

j
∑  ai 

A 78 22 0 100 1.01 
B 50 48 2 100 1.23 
C 72 80 48 200 7.85 

i
∑  200 150 50 400  

bj 2.27 1.14 0.18   

Table 7-4  Total number of trips multi-modal gravity model example 

Lastly we distribut the total number of trips across all transport modes, in proportion to the 
value of the friction factors The result is shown in Table 7-5. 
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Trips by transport mode 
  A B C Total Oi

m Total 
Oi 

 car 46 12 0 58  
A bike 23 6 0 29 100 
 publ tr 9 4 0 13  
 car 28 28 2 58  
B bike 14 14 0 28 100 
 publ tr 8 6 0 14  
 car 36 44 28 108  
C bike 18 18 14 50 200 
 public tr 18 18 6 42  
 car 110 84 30 224  
Total Dj

m bike 55 38 14 107  
 publ tr 35 28 6 69  
Totaal Dj  200 150 50  400 

Table 7-5  Final results multi-modal gravity model example 

 

7.3.2 Sequential model distribution/transport mode via the logsum 
Assume that we want to do the modal split calculation after the distribution calculation.  We 
first determine the total of all transport flows (without regard to transport modes) between 
each origin and destination using a distribution model.  If there are several transport modes 
between an origin and a destination, car and train for example, we distribute the complete 
transport flow across the transport modes concerned after the distribution calculation, using 
a logit model. 

This, however, presents a methodological problem.  We need the travel impedances 
between all origins and destinations and a deterrence function to carry out the distribution 
calculation, using a gravity model for example.  But when we start the distribution calculation 
we have no information yet as to how the flows are distributed across the transport modes.  
It is unclear, therefore, what travel impedance and deterrence function we should use for a 
specific origin-destination pair. Should we use the car-specific values, the train-specific 
values or a kind of average of the two? 

Let’s look at travel impedance.  Assume that there are two possible transport modes 
between a particular origin and destination.  It would seem acceptable to take the average 
travel impedance of these two transport modes as representing the travel impedance for the 
relation.  But this is incorrect.  Assume that  the traveller estimates the impedance by car 
between A and B to be 30 minutes for example (generalised travel time).  In that case the 
introduction of a train connection between A and B with an estimated impedance of 40  
minutes of generalised travel time will not make the overall impedance on the relation (30 + 
40)/2 = 35 minutes.  In general one could say that the overall experienced travel impedance 
on a relation decreases when an additional travel option is introduced.  At most, it will 
remain equal to the impedance that prevailed befóre the introduction of the alternative 
transport mode.  Nor is it entirely satisfactory to equalise the overall impedance to the 
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minimal impedance of all transport modes on a relation.  This does not do justice to the fact 
that the objectively worst connection, for example in terms of travel time, will still be 
preferable in the subjective perception of some travellers.  As we have shown when 
discussing discrete choice theory, we simply do not know all the considerations that help 
travellers decide on a particular transport mode.   

The problem above can be solved by using the train of thought expounded in the calculation 
method of the hierarchical logit model in chapter 3.6.2. 

We distribute the total transport flow (aggregated over all transport modes) across all origins 
and destinations using the following gravity model (see chapter 6.5.3.2): 

 
T a b eij i j

Vij=  

 
Here, Vij is the utility related to the trip between i and j taken over all transport modes 
serving the connection between i and j.  Remember that Vij has a negative value and that the 
value decreases as the effort involved in making the trip increases.  If there are several 
transport modes between i and j, we calculate the combined (or replacing) utility by the 
following formula: 

 
V LSij ij= θ  

 
in which LSij is the logsum (over all transport modes between i and j) given by: 

 

LS eij
V

m ij

ij
m

=
′

′ ∈
∑ln  

 
and where, moreover: 0 1< ≤θ  
 
We next find the transport flows per modality by applying the logit model, where the various 
transport modes represent the choice alternatives between the same origin and destination: 

 

T T
e

e
ij
m

ij

V

V

m ij

ij
m

ij
m= ∗ ′

′∈
∑

 

 
If θ = 1, then the model discussed here is algebraically equivalent to the simultaneous 
model we discussed in the previous paragraph 7.3.1.  (See also the discussion of the 
hierarchic logit model in chapter 3.6.2.) 

It is sometimes argued that the choices of destination and transport mode are made 
simultaneously. When choosing a destination one also reflects on the available transport 
options to that destination.  Others argue that the choice of destination comes before the 
choice as to the kind of transport mode (i.e. a sequential choice process).  Both 
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observations bear some truth.  Things also depend on the purpose of the trip and other 
factors. 

Because it appears that distribution and transport mode are simultaneously calculated in the 
multi-modal gravity model, while when using the logsum method the transport mode is 
calculated subsequent to distribution, the impression is created that both calculation methods 
reflect different points of view.  As we noted above, this only applies when θ < 1 is in the 
logsum method.  When θ = 1 both methods are equivalent and can be derived from one 
another. 

To conclude, we point out that the application of sequential choice models using hierarchical 
logit models has been put forward in the literature (see for example Ben Akiva and Lermand 
(1985)3 ), but that the sequential choice model is rarely used.  This is probably because, in 
practice, the determination of the correct choice structure and the estimation of the 
parameters may lead to problems.   
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8 Traffic assignment 
 
The traditional traffic demand model consists of the following sub-models: 

• A production model and an attraction model with which the number of departures and 
arrivals is assessed. 

• A model for distribution- and transport mode choice to determine OD-tables with trips 
per transport mode. 

• A traffic assignment model that is used to convert the data from the OD-tables to flows 
on the links of the network for the various transport modes. 

 
This chapter deals with traffic assignment models, the third phase of the traditional traffic 
demand model.  We confine ourselves to the basic principles of traffic assignment models.  
Those wishing more information are referred to the standard text on this topic by Sheffi 
(1985)5. 

The primary concern in traffic assignment models is route choice.  It would appear self-
evident that a traveller would, in principle, choose the shortest route to his point of 
destination.  This is why shortest route algorithms play an important role in traffic assignment 
models. 

Since there are such large differences between networks for private transport (car, bicycle, 
etc.) and public transport, they will be dealt with separately. 

8.1 Traffic assignment models for road networks 

8.1.1 Shortest route in a road network 
In the traffic assignment model discussed in this chapter, the shortest route (also called the 
shortest path) in the network must be repeatedly determined between an origin and a 
destination.  There are many shortest path algorithms.  We will discuss one on the best 
known and most used, namely Dijkstra’s algorithm. 

Assume we are looking for the shortest path between nodes s and t in a network.  To that 
end, Dijkstra’s algorithm builds a tree (a shortest route tree) starting from s.  This is why this 
algorithm is also called a “tree builder algorithm”.   

Starting out from s we travel through the network and label every node u on the way with 
L(u).  This label L(u) indicates the length of the provisionally discovered shortest path from s 
to u.  The labels are initially provisional and can be changed in the course of the algorithm as 
we find a path that is shorter than the current value of L(u).  When a label can no longer be 
changed (node no longer present in set T in the algorithm below) it becomes a definitive 
label.  

In the algorithm below the following notation is used: 

V the set of all nodes 
T the set of all nodes with a provisional label 
s the node of origin 
t the node of destination 
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u, v general indication for a node 
e general indication of a link 
 
The algorithm reads: 

 
step 1:  L(s) : = 0 and for all v ∈ V,  v ≠ s :  L(v) = ∞ 
step 2:  T : = V 
step 3:  Let u ∈ T  for which  L(u) is minimal: 

If L(u)  = ∞ then stop; there is no solution. 
If u = t  then T := T - {u} and  stop; 

(L(t) is the shortest route from s to t) 
step 4:  For each link e from u to v ∈ T : 

If  L(v) > L(u) + length(e)  then  L(v) := L(u) + length(e) 
Step 5:  T := T - {u} and go to step 3. 

 
Example: 

We illustrate the algorithm by determining the shortest path between A and H in the 
network shown in Figure 8-1. 
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Node A receives the label 0, all others the label 'infinite'.  Nodes B, C and D receive the 
provisional labels 2, 6 and 7.  Node A is now made definitive, that means that it is removed 
from the set T. 

 
Now L(B) = 2 is minimal.  Nodes E, F and C are directly connected to B.  We now set 
L(E) = 9 and L(F) = 17.  Node C already has the provisional label L(C) = 6.  Since this 
provisional label exceeds L(B) + 3, L(C) is replaced by the new provisional value of 5.  
Node B now becomes definitive with L(B) = 2 and is removed from set T. 

Node C from set T now has the smallest label.  We check the links coming from C, where 
necessary adjust the labels of the nodes that are connected to C and make the label of C 
definitive.   

This process is repeated until L(H) achieves a definitive label value.  This label value (14) 
indicates the length of the shortest path from A to H.  Table 8-1 shows the course of the 
algorithm.  Definitive labels are underlined. 

 

 
Figure 8-1  Example Dijkstra's shortest path algorithm.6 
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If, when labelling a node, we remember via which link this node was most recently labelled, 
we also know at the finish of the algorithm which links constitute the shortest path to this 
node.  The algorithm above stops as soon as we have reached the destination node.  If we 
pursue the algorithm until all nodes have received a definitive  label, in other words, when we 
take T = 'empty' as the criterion at which we halt the algorithm, a shortest-route tree will be 
built up from the start-point to each node in the network. 

 

8.1.2 Classification of traffic assignment models 
The demand for transport, given as trips in the OD-table, varies with time.  Similarly, 
network characteristics may vary over time, be it as a function of transport demand or not.  
Traffic assignment models can in the first instance be classified according to this aspect of 
time: 

• Static traffic assignment models assume that transport demand and supply are time-
independent.  The traffic flows in the network that are calculated using these static 
models, therefore, do not change over time and are, in fact, the flows that would emerge 
if the transport demand remained constant over a sufficiently long time-span.  We may 
express this by saying that traffic is assigned to the entire route between an origin and a 
destination.  Other commonly used terms for static models are steady state or 2-
dimensional (2D) models.  A steady-state flow is a flow that does not change over time.  
The term 2D indicates an assignment in the 2-dimensional area of the network, and that 
the dimension of time has been left out. 

• Dynamic traffic assignment models do take account of variation in transport demand 
and with possible changes in the characteristics of the network.  As a result, flows on the 
links in the network are calculated that vary over time.  Another name for dynamic 
models is 3D or 3-dimensional models.  

 
The dynamic models are still in the research stage and are not much used yet, in practice.  In 
this text, we confine ourselves to static traffic assignment models, which have been subject 
to long experience.  

The simplest assignment method is the all or nothing traffic assignment model.  This 
method assigns all trips to one route, namely the shortest.  No account is taken of the 
changes in travel resistance due to network loading.  This model assumes that each road 

 
A B C D E F G H Figure 8-1 
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ a 
0 2 6 7 ∞ ∞ ∞ ∞ b 
0 2 5 7 9 17 ∞ ∞ c 
0 2 5 7 9 17 8 ∞ d 
0 2 5 7 9 16 8 ∞ e 
0 2 5 7 9 16 8 14 f 
0 2 5 7 9 16 8 14 g 

Table 8-1  Solution of the shortest path example. 
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user is fully aware of the travel impedance of all possible routes and that they weigh them in 
an equal manner. 

In reality, however, several routes between an origin and a destination are used, even when 
the network is not heavily congested.  This is due to the fact that not every road user is fully 
acquainted with all travel impedances in the network.  Travel impedance of the links, 
moreover, is judged differently by different traffic participants. 

This effect can be accounted for by assuming that the perception of traffic impedance varies 
according to some statistical probability distribution in the population of traffic participants.  
This leads to the group of stochastic traffic assignment models.  Incomplete and varying 
levels of knowledge amongst the road users regarding travel impedances in the network are 
taken into account.  This can be done in two ways.  The first method uses theoretical 
probability curves to lead traffic along alternative routes; the second uses simulation.   

As in the all-or-nothing method, the stochastic model does not take into account the changes 
in traffic impedance that are due to network congestion. 

The models that do take changes in travel impedance of a link due to congestion into 
account are equilibrium models.  An equilibrium model is used to make assignments in 
road networks experiencing congestion.  The prime characteristic is that the travel 
impedance (more particularly the time component of the impedance) of a link is a function of 
the traffic load.  If the load on the links that initially constituted the shortest route increases, 
traffic will search for alternative routes.  This will eventually lead to an equilibrium in which 
travellers will be unable to improve travel time by unilaterally choosing another route.  
Unilateral action means: without communication, co-operation or agreement with others.  
This is the equilibrium formulated by Wardrop in 1952 (1st principle of Wardrop), that 
equilibrium models try to calculate.  Wardrop formulated a second type of equilibrium, the 
so-called system-optimal equilibrium that will be dealt with later on in the chapter. 

Finally, the stochastic traffic assignment model and the equilibrium model can be combined.  
Stochastic equilibrium models take account of the effect of congestion and of the 
differences in perception of traffic impedance by the road users.   

 
 

8.1.3 Notation 
 

  Stochastic effects taken into account? 
  no yes 
 

Capacity 
 

no 
 

all-or-nothing assignment 
 

stochastic assignment 
effects 

taken into 
account? 

 
yes 

 
equilibrium assignment 

 
stochastic equilibrium 

assignment 

Table 8-2  Classification of static assigment models 
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Indexes 
i = origin 
j = destination 
a = link in the network 
r = route (successive links) 
 
Variables 
Tij = number of trips per time-unit from i to j 
Tij

r = number of trips per time-unit from i to j via route r 
cij = travel impedance from i to j 
ca = travel impedance for link a 
$ca  = system impedance (= qa.ca) for link a 
~ca  = marginal system impedance (= dc dqa a$ / ) for link a 
tij = travel time from i to j 
ta = travel time for link a 
qa = number of trips per time-unit on link a (intensity) 
 
The concept of travel impedance has been discussed in the chapter on distribution.  The 
travel impedance of a trip is written as a linear combination of the duration and costs 
experienced by the traveller.  In a network link one often uses a linear combination of travel 
time and length of the link.  The length of the link then becomes a measure for the travel 
costs over the link. 

8.1.4 All-or-nothing assignment 
The all-or-nothing traffic assignment model is a very simple assignment method.  Figure 8-2 
shows an example. 
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Figure 8-2a shows the network with the travel impedances along the links.  The OD-table 
that needs to be assigned to this model is as follows: 

  

 

 

Figure 8-2  Example all-or-nothing assignment.2 

 

 C D 
A 400 200 
B 300 100 
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The trips in the OD-table are successively assigned per OD-pair to the shortest route for 
that OD-pair  Journeys that end up on the same link in the network are added.  Figure 8-2b 
shows the shortest route-trees coming from the nodes A and B, with the trips assigned.  
Figure 8-2c shows the end-result of the assignment. 

All-or-nothing traffic assignment models can give reasonable results in a network where 
there is no congestion and which offers few alternative routes between an origin and a 
destination, and when, moreover, these few alternative routes show great differences in 
traffic impedance.  The prime function of an all-or-nothing traffic assignment model, 
however, is its function as a building block in more advanced traffic assignment methods, as 
will become clear  further on in this chapter. 

8.1.5 Stochastic assignment 
Consider a group of travellers who want to move from a given origin to a given destination.  
Assume that they can choose between a large number of routes.  Each route is characterised 
by a specific total traffic impedance that can be measured objectively.  In an all-or-nothing 
traffic assignment model we assume that everyone will take the shortest route.  However, 
due to differences in perception, in knowledge and in other factors there will be a divergence 
of opinion within the group regarding the various levels of traffic impedance.  This will cause 
a divergence in the routes that are taken. It is this effect that a stochastic traffic assignment 
model tries to account for.  In principle, there are two groups of methods that can do this: 

8.1.5.1 Stochastic traffic assignment with theoretical probability functions. 
These methods use a theoretical probability model, such as a logit model for example, to 
distribute the travellers across the alternative routes.  These methods have a number of 
disadvantages. 

The first drawback concerns the definition of the alternative routes. Realistic networks 
generally show a very large number of routes between an origin and a destination.  It is 
hardly possible to include all these alternatives in a theoretical probability model.  In some of 
these methods, therefore, so-called reasonable routes are determined. Again, there are a 
number of ways in which this can be done.  It is possible, for example, to determine not only 
the shortest route, but also the second shortest route, the third-shortest, etc.  Another 
method to determine a reasonable route is as follows: a reasonable route is defined as a 
sequence of nodes, whereby each subsequent node is located further away from the origin 
and closer to the destination.  These methods are both rather arbitrary and the necessary 
algorithms tend to be complex. 

The second drawback is that the methods that depend on theoretical probability models are 
sensitive to the way in which the network has been defined.  The problems that can be 
encountered when one applies the logit model to route choice have been illustrated in 
chapter 3.5.  These are connected to the assumed identical and independent error terms in 
the derivation of the logit model. 

Because of the drawbacks mentioned above, stochastic traffic assignment models based on 
theoretical probability curves are now rarely used.  We will, therefore, not discuss them 
further in our text. 
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8.1.5.2 Stochastic traffic assignment models based on simulation 
The prime characteristic of these models is that the traffic impedance of a link is determined 
using a random number generator (Monte Carlo simulation). 

The limited knowledge held by road users regarding the traffic system can be modelled by 
defining the levels of link traffic impedance as stochastic variables. 

C ca a a= + ε  
 
The subjective travel resistance Ca of a link is a stochastic variable and is equal to the 
objectively measurable traffic impedance ca increased by a stochastic error term εa.  
E(εa ) = 0 applies to the mean value of the error term, so that ca is the mean value of the 
subjective travel impedance Ca.  The objective travel impedance ca can be interpreted as the 
travel impedance used in the all-or-nothing traffic assignment. 

A Normal distribution is usually taken for the probability distributions of the error terms.  
More important than the shape of the probability distribution, however, is the specification of 
the variance of the error term.  In order to ensure that the variance at route level remains 
independent of network coding, it is necessary that the variance is proportional to the link 
impedance.  In other words, the dispersion must be proportional to the square root of the 
link impedance. 

Keeping in mind the remarks above regarding shape and variance of the probability 
distribution of the error term, one arrives at the following, often used formula for the link 
impedance: 

C c z ca a a= + ϕ  
 
with: 

ca  = the objectively measurable link impedance 
z = random number from a (pseudo) normal N(0,1)-distribution 
ϕ  = a factor determining the size of the variance 
Ca  = subjective link impedance 
 

8.1.5.3 Algorithm for the stochastic traffic assignment model 
The algorithm for the stochastic traffic assignment model based on simulation comes down 
to the following.  Applying the formula above we draw lots using a random number 
generator (Monte Carlo simulation) to determine the subjective link impedance for each link 
in the network.  We carry out an all-or-nothing assignment on this network with subjective 
link impedances, and we repeat this a number of times.  Due to the element of chance, the 
shortest routes through the network will vary with each draw.  This causes a distribution of 
the traffic flows across a number of routes.  

We obtain the desired stochastic traffic assignment by taking the average of a number of all-
or-nothing traffic assignments carried out in this way.  The number of iterations can be fixed 
to a previously agreed number N.  In that case, after each draw of subjective link 
impedances, 1/N of the total travel demand from the OD-table is assigned to the network 
using an all-or-nothing assignment and finally all partial assignments are added.   
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The algorithm below, however, is a better choice.  After each draw of the subjective link 
impedances the average is taken of the all-or-nothing assignments of the entire OD-table up 
to that point.  This process is repeated until the stopping criterion has been reached.  The 
stopping criterion could apply when the flows achieved after an iteration no longer diverge 
much from the flows calculated in the previous iteration.  This is when convergence is said to 
have been achieved. 

 
i = 0 
qa

(i) = 0 
repeat 

i = i + 1 
Determine Ca by drawing lots  
Detrmine flows Qa by an all-or-nothing assignment using impedances Ca  
φ = 1 / i  
qa

(i) = (1 - φ) qa
(i-1)  +  φ Qa 

until stopping criterion = true 
 
The outcome of using φ= 1 / i in the algorithm above is that each newly calculated qa

(i) is the 
average of all flows Qa drawn until that point. 

 

8.1.6 Equilibrium assignment 
In the section above, we incorporated the differences between individual road users in our 
calculation by means of a stochastic traffic assignment model.  This can explain why road 
users choose different routes in otherwise equal circumstances.  The reason is that not 
everyone shares the same opinion as to what constitutes the shortest route. 

There is yet another reason why traffic between a specific origin-destination pair distributes 
itself across several routes.  As soon as the traffic volume of this initially shortest route 
increases, travel time, and thus traffic impedance, increases.  Travel impedance on this 
originally shortest route can increase to such levels that other routes become options for the 
journey.  This is the subject of this section.  Note that this section sets out from the 
assumption that there are no differences between road users!  So there are no stochastic 
elements involved.  This is why the subject to be discussed is also called a deterministic 
equilibrium assignment. 

8.1.6.1 User-optimal and system-optimal equilibrium assignment 
If the load on a link in the network increases, then the travel impedance of a link also 
increases.  How this can lead to the idea of equilibrium in transport networks can be shown 
by an example. 

Assume that the number of road users who want to move from a given origin to a given 
destination is known. Also assume that origin and destination are connected by a number of 
routes.  How will the road users distribute themselves over these routes? 
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If all of them were to take the shortest route (calculated over the unloaded network) then 
this route could become congested.  This would lead to an increase in travel impedance 
along that route to the point where this route would no longer be the shortest one.  Some 
road users would choose an alternative route.  Congestion could also develop on the 
alternative route, etc.  Eventually an equilibrium will be reached, as formulated for the first 
time in 1952 by Wardrop. (Wardrop’s first principle) 

Traffic distributes itself across the links of a network in such a way that an 
equilibrium occurs in which no individual road user can lower his travel resistance by 
unilaterally (independently of the other road users) choosing another route. 

If all road users are fully aware of the travel impedances on all links (even if they do not use 
these links themselves), and if they also judge these travel resistances in the same way, 
Wardrop’s first principle implies the following: 

In the equilibrium situation all routes used between a given origin and destination 
have the same travel impedance, while routes not used have a higher level of travel 
impedance. 

Wardrop’s first principle describes the traffic flows that occur when each individual user 
strives to minimise his own travel impedance.  It is a descriptive principle. The distribution 
of traffic flows that occurs is called a deterministic user-equilibrium or a deterministic user-
optimal equilibrium assignment.  The term deterministic points to the fact that stochastic 
link travel resistances have not been used. 

When we multiply the travel impedance on a link by the intensity on that link we get the 
system impedance $ca on that link.  This is the travel impedance experienced by all vehicles 
together on the link: 

$c q ca a a=  

Summation of the system travel impedance across all links of the network leads to the total 
system impedance of the network.  Since travel time and/or travel distance usually are the 
most important components of travel impedance, the total system travel impedance is a 
good measure for total fuel use (and the environmental pollution caused) of all vehicles 
together across the entire network.   

$c totaal = ∑ q ca a
a

 

For any flow distribution or assignment we can determine the total system impedance.  We 
could, for example, calculate the total system impedance for a deterministic user-optimal 
equilibrium assignment. 

Assume that one assigns an OD-table to the network in such a way that the total system 
impedance is minimised.  This kind of assigment of traffic over the links of the network is 
called a system-optimal equilibrium assignment.  In this case we also have an equilibrium, 
but now instead of all used routes between the same origin and destination having the same 
travel impedance, they have the same marginal system impedance.  We will return to this 
point in section 8.1.6.4.  

The system-optimal equilibrium assignment, was also described by Wardrop and is 
sometimes referred to as Wardrop’s second principle.  Wardrop’s second principle is not a 
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descriptive, but a normative principle.  An assignment according to Wardrop’s second 
principle complies with a specific  imposed norm, namely that of minimising total system 
impedance. 

The term congestion-free networks when the traffic volume on a link does not influence 
travel time and thus travel impedance.  This generally occurs, at least approximally, at low 
traffic volumes or when all network links have a high capacity.  In section 8.1.6.4we will 
show that the user-optimal assignment and the system-optimal assignment in congestion-free 
networks are equivalent.  Both are then equal to the flow distribution that is calculated with 
an all-or-nothing assignment. 

When congestion does occur, the two traffic flow distributions differ from one another. The 
total system impedance will be higher in a user-optimal assignment than in the system-
optimal assignment.  Congested networks will naturally achieve an equilibrium according to 
Wardrop’s first principle, purely because this principle describes usual human behaviour. A 
distribution of traffic flows according to the system-optimal assignment (desirable from a 
social view point, in terms of fuel-use restriction and environmental degradation) presents no 
stable equilibrium.  It is possible, for example, that such a flow distribution gives individual 
traffic participants the chance to reduce their travel impedance, for example by unilaterally 
(independently) taking another route.  A system-optimal distribution of traffic flow will, 
therefore, require specific enforced traffic measures (a toll levy, for example).  To emphasise 
the contrast between both assignments, the user-optimal assignment is sometimes called a 
selfish optimum, and the system-optimal assignment a social optimum.   

8.1.6.2 Time-loss functions 
An increase in the traffic volume on a link leads to an increase in travel time and thus to an 
increase in the travel impedance on a link.  On urban networks, we are not primarily 
concerned with congestion-effects on the link itself, but especially with the delays at 
intersections.  The connection between traffic load and travel time is represented by a time-
loss function.  One of the most widely-used functions is the BPR-function (Bureau of Public 
Roads): 

t t
q

capa a
free flow a= +







( )1 α

β

 

 
In this formula: 

ta = travel time on link a (including intersection delay) 
ta

free flow = travel time on link a in an non-congested network (“free flow”) 
cap = “practical” capacity of link a 
α, β  = empirically determined coefficients 
 
Common values for the coefficients are α = 0.15 en β  = 4.  Note that the practical 
capacity at this value of a  in the formula above represents the level of traffic intensity 
whereby the travel time on the link is 15% higher than the travel time at free flow.  The 
practical capacity, therefore, is something different from the maximal capacity of a link, that 
corresponds to the maximal traffic flow that a link can carry. 
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A time loss function usually is slightly rising at low volmes, and subsequently rises strongly 
when the practical capacity is exceeded. 

Because we are dealing with travel impedance and not with travel time, we need to make 
another conversion to generalised travel time.  This gives the following function that, for 
traditional reasons, we will also continue to call a time loss function. 

ca = ca(qa) 

8.1.6.3 Algorithm for the user-optimal equilibrium assignment 
Algorithms that are used to calculate equilibrium assignments are also called capacity 
restraint algorithms.  They use an iterative procedure.  A number of all-or-nothing 
assignments are, in fact, applied, and each new iteration uses the travel impedances acquired 
in the previous iteration.  An incremental assignment method was formerly used where 
fractions of the OD-table were continuously “loaded onto” the network, until the entire table 
had been assigned.  A better procedure is the one below where the entire OD-table is 
assigned to the network in each separate iteration.  To ensure that the algorithm converges 
(that means that the results of an iteration differs less and less from the results of the previous 
iteration) it is necessary to use a weighting factor, whereby the results of the previous 
iteration(s) are incorporated into the next iteration. 

 
i = 0 
qa

(i) = 0 
repeat 

i = i + 1 
Be 
Determine ca by a time-loss function: ca = ca( qa

(i-1)) 
Determine flows qa

+  by using an all-or-nothing assigment using impedances ca 
Determine weighting factor  φ  (0 < φ  < 1)  (see below) 
qa

(i) = (1 - φ) qa
(i-1) + φ qa

+ 
until stoppng criterion = true 
 
 
Weighting factor 
The weighting factor φ  in the algorithm above is used to find the new link volumes as a 
combination of the flows that were calculated in the previous iteration and the all-or-nothing 
volumes of the present iteration. 

There are a number of options for the weighting factor: 

• Fixed weighting factor   
For example: φ  = 0.5 
This is the simplest method.  Convergence, however, is not guaranteed and even if the 
algorithm converges it needs a large number of iterations. 

• Diminishing weighting factor 
For example: φ  = 1 / (i + 0.5)  or  φ  = 1 / i 
With φ  = 1 / i this is called the Method of Successive Averages (MSA). The effect of 
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this kind of weighting factor is that the new flows are the mean of the all-or-nothing 
assignment of all the iterations carried out up till this point.  This method gives about the 
same results as the method with the optimal weighting factor (see below), but usually 
takes more calculation time than the optimal weighting factor. 

• Optimal weighting factor 
The weighting factors used above have the following disadvantages. Convergence of the 
algorithm is not guaranteed when using a fixed weighting factor and the algorithm is 
inefficient.  Although the algorithm does converge when a diminishing weighting factor is 
used, the method remains inefficient.  An optimal weighting factor for which convergence 
is guaranteed  and which is, moreover, very efficient, is based on the Frank-Wolfe 
algorithm.  The Frank-Wolfe algorithm is used to solve a minimisation-problem.  In the 
following paragraph we will investigate how solving a minimisation-problem is related to 
the determination of an equilibrium assignment. 

 
Beckman transformation; equilibrium assignment formulated as a minimisation-
problem 

 
The Wardrop conditions for user-equilibrium can be written as follows: 

cij
r  =  cij when  Tij

r  >  0  
cij

r  ≥  cij  when  Tij
r  =  0 

 
The link-loads are: 

q Ta ij
r

ij
ra

ijr
= ∑ δ   where:  δ ij

ra = 1  of  δ ij
ra = 0 

The parameters δ ij
ra indicate whether a route r between i and j does or does not use link a. 

Now the total impedance between i and j using route r is: 

c c qij
r

a a
a

ij
ra= ∑ ( ) δ  

 
As shown above, Wardrop’s user-equilibrium can be written in the form of a large number 
of mathematical equations.  Solving these equations gives the solution to the equilibrium 
problem, and thus finds the value of the flows on all the links.  This, however, presents a 
problem: solving a system comprising of a great number of (non-linear) equations is an 
extremely difficult problem in numerical mathematics.  In this context, “difficult” means that 
existing iterative solution techniques do not always converge, or if they do converge, they 
may take a long time.   

We now use a “trick” which is very often applied in numerical mathematics.  The problem of 
solving the equations that resulted from Wardrop’s conditions is transformed to the process 
of solving an equivalent optimisation problem.  This means that solving the optimisation 
problem also gives the solutions to the original system of equations.   Why do we use such a 
roundabout way?  Because finding the optimum of a function (a maximum or minimum) is a 
much simpler problem for which numerous different algorithms are available. 
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Intermezzo 
Assume that we want to optimise a function w = f(x,y)  This can be done by taking the 
derivatives relative to x and y and setting them equal to zero. 

∂w / ∂x  =  0 
∂w / ∂y  =  0 
 
We now solve this system of two simultaneous equations and use them to find the values of 
x and y for which the function w receives an optimal value.  This example shows that an 
optimisation problem can be transformed to solving a system of equations.  Alternatively, 
solving a system of equations can also be transformed to the problem of finding the optimum 
of an objective function.  The objective function is that function of which the derivatives are 
the equations that have to be solved. 

 
Beckman transformation 
In 1956, Beckman proved that, reasoning along the lines given in the intermezzo above, 
solving the Wardrop equations for user-equilibrium is equivalent to solving the following 
minimisation-problem: 

min ( )qa
c q dqa

q

a

a

0
∫∑  

 
subject to: 

T Tij
r

r
ij∑ =  

 
This expression indicates that the equilibrium flows qa are achieved by choosing them in such 
a way that the sum over all links of the areas under the time loss functions from 0 to qa is 
minimal. 

We now return to determining the optimum weighting factor.  When we described the 
algorithm for the users optimum equilibrium assignment, we saw that the result of an iteration 
is written as follows: 

qa
(i) = (1 - φ) qa

(i-1)  +  φ qa
+  

The Frank-Wolfe algorithm can now be described as an algorithms that finds an optimal 
weighting factor φ in such a way that at each iteration the largest possible decrease in the 
value of the above mentioned objective function is achieved.  We refer to Sheffi (1985)5 for 
more details regarding the functioning of the Frank-Wolfe algorithm. 

 

8.1.6.4 Algorithm for the system-optimal equilibrium assignment 
As discussed in paragraph 8.1.6.1, the system optimal assignment is the assignment of flows 
in the network that minimises the total system resistance. Therefore we need to solve the 
following minimisation problem: 
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min ( )q a a a
a

a
q c q∗∑  

 
The following is true for a general differentiable function f(q): 

f q f q dqa

qa

( ) ( )= ′∫
0

 where f′(q) is the derivative of f(q). 

When we apply this to the objective function above we get the following minimising problem: 

 

min ~ ( )q a

q

a
a

a

c q dq
0
∫∑  where:  ~ ( ) ( ( ))c q

d
dq

q c qa a= ∗  

 
The function ~ ( )c qa is the so-called marginal system impedance function for link a, and 
can be interpreted as the increase in system impedance on link a (the travel impedance 
experienced by all road users together), for an infinitesemal increase in intensity from q to q 
+ dq on link a.  If a single new traveller arrives on link a the travel impedance on the link 
increases. Not only the new traveller experiences this as a nuisance, but also all the road 
users who already were on the link. 

The objective function above shows a remarkable similarity to the objective function that we 
had to minimise in order to find a user-optimal equilibrium assignment.  The only difference is 
that the time loss function ca(q)  has been replaced by the marginal system impedance 
function ~ ( )c qa ).  This means that we can apply the algorithm of the user-optimal equilibrium 
assignment to find a system optimal assignment, as described in section 8.1.6.3, on the 
understanding that we replace ca(q)  by ~ ( )c qa ).  It also means that in a system-optimal 
equilibrium assignment the marginal system impedance is equal for all used routes between 
the same origin and destination, not the normal travel impedance (as is the case in a user-
optimal assignment).   

 
It now also becomes obvious that in congestion-free networks (meaning networks where all 
links experience no influence of traffic volume on the travel impedance) the user-optimal 
assignment and the system-optimal assignment are equal. For in that case ca(q) is a constant 
function, and c q c qa a( ) ~ ( )= applies for all q. 

 

8.1.6.5 Numerical example equilibrium assignment 
The ideas that play an important role in the equilibrium assignment will be discussed in a 
detailed example, taken from Ortúzar and Willumsen2.  Figure 8-3shows a simple network.  
Locations a and b are connected by links 1 and 2.  The time-loss functions for the two links 
are indicated, and shown in the figure.  (For the sake of clarity, the time-loss functions have 
been kept simple in order to make the calculations easier to understand.)  The number of 
trips from a to b is Tab. 



 

 

100 

Since the network is so simple, the calculations can be written down analytically. This is not 
possible for complicated networks, when the iterative algorithm in section 8.1.6.3 needs to 
be used. 

 

 
 
Question 1: 
Calculate the intensities on the two links for various values of Tab. 

 
a. Tab < 250 
For Tab < 250 it is obvious that all traffic will use link 1.  This is because in that case the 
travel impedance  c1 < 15, which is smaller than the travel impedance that can ever be 
achieved on link 2. 

  
b. Tab > 250 
As soon as Tab > 250, the traffic will be distributed over both routes in such a way that the 
travel impedance on both routes is identical (Wardrop’s 1st principle) and that the sum of 
both flows equals Tab. 
 
Assume, for example Tab = 2000 
then: 
 

a bTab Tab

 1

2  
c1 = 10 + 0.02 q1 

 
c2 = 15 + 0.005 q2 
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which leads to: q1 = 600,  q2 = 1400 and c1 = c2 = 22. 
This solution is shown in the graph in Figure 8-3. 

 
 
Question 2: 
Find the user-optimal assignment for Tab = 2000 using the Beckman transformation. 

 

We need to solve: 

min { ( . ) ( . ) }

min { . . }

min { . ( ) . ( ) }
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By taking derivates and setting them to equal to zero, we find that the objective function is 
minimal for q1 = 600.  Therefore q2 = 1400 and c1 = c2 = 22.  This is the same solution that 
we found in question b. 

 
In this simple case we can also use a graph to show that the equilibrium flows are achieved 
by choosing them in such a way as to minimise the sum of the areas under the time-loss 
functions, as elaborated in the discussion of the Beckman transformation.  See Figure 8-4.  
Both time-loss functions are depicted in one graph.  The horizontal axis has been given two 
scales in opposite directions in such a way as to make the sum of the flows q1 and q2 equal 
to 2000.  It is easy to see that the sum of the areas under the time-loss functions is minimal 
for c1 = c2, with the associated q1 = 600 and q2 = 1400.  At another combination of flows, 
q1 = q2 = 1000 for example, the sum of the areas increases by the vertically hatched part. 
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Question 3: 
Calculate the system-optimal assignment for Tab = 2000 
 
 
The system impedances on the links are: 
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The marginal system impedances are: 
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In the system-optimal equilibrium assignment the marginal travel impedances along both 
routes are equal (Wardrop’s 2nd priniple). 
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q q

 

 
This leads to: q1 = 500,  q2 = 1500 en ~ ~c c1 2 30= =  
 

 
Figure 8-4  Area under time-loss functions.2 
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Question 4: 
Find the system-optimal assignment for Tab = 2000 using the Beckman transormation. 

 
We need to solve: 

min { ( . ) ( . ) }

min { . . }

min { . ( ) . ( ) }
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∫∫
  

 
Differentiating and setting the derivative equal to zero we find that the objective function is 
minimal for q1 = 500.  Therefore q2 = 1500 and ~ ~c c1 2 30= = .  This is the same solution as 
the we found in question 3.  

 
 
The results of the calculations for Tab = 2000 are shown in Table 8-3.  The travel 
impedances, marginal travel impedances and system impedances are included for the user-
optimal and the system-optimal assignment. 

 
 

 user-optimal system-optimal 
 link 1 link 2 total link 1 link 2 total 

Flow 600 1400 2000 500 1500 2000 
Impedance 22 22  20 22.5  

Marginale impedance 34 29  30 30  
System impedance 13200 30800 44000 10000 33750 43750 

Table 8-3  Results equilibrum assignment example 

 

Note in the system-optimal assignment that the total system impedance is less by 250 
vehicle-costminutes per hour compared to the total system impedance in the user-optimal 
assignment.  Although this is socially desirable (saving on fuel costs etc.) the associated flow 
distribution over the links cannot be forced without additional measures.  The travel 
impedance along link 1 in the system-optimal assignment is, in fact, smaller than that along 
link 2.  This will lead some link 2 users to change to link 1.  The equilibrium of the user-
optimal assignment eventually would occur, whereby the travel resistance along both routes 
is equal to 22 minutes of generalised travel time. 

 
 

8.1.7 Stochastic equilibrium assignment 
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A variation of Wardrop’s first principle applies to the most advanced (and most realistic) 
static assignment method, namely the stochastic equilibrium assignment (formulated by 
Daganzo in 1977): 

Traffic distributes itself across the links of a network in such a way that an 
equilibrium occurs in which no individual road user thinks that he can lower his travel 
resistance by unilaterally (independently of the other road users) choosing another 
route. 

Take note of the underlined word in the above definition.  It is about the personal perception 
of road users. System impedance is higher in a stochastic equilibrium assignment than in a 
deterministic equilibrium assignment.  But it will approach it as the uncertainty of the road 
users regarding the travel impedances in the network decreases. 

The algorithm that we give consists of a combination of the algorithms of the equilibrium 
assignment and the stochastic assignment.  The algorithm is identical to the algorithm of the 
equilibrium assignment, with one exception: the “do an all-or-nothing assignment” is replaced 
by the “do a stochastic assignment”.  We already discussed the way in which a stochastic 
assignment is done earlier in this chapter.   

 
i = 0 
qa

(i) = 0 
repeat 

i = i + 1 
Determine ca with time-loss function: ca = ca( qa

(i-1)) 
Determine flows qa

+  by a stochastic assignment using impedances ca 
Determine weighting factor φ  ( 0 < φ  < 1)  
qa

(i) = (1 - φ) qa
(i-1) + φ qa

+ 
until stopping criterion = true 
 

The MSA method can be used to determine φ   in the algorithm above.  Faster convergence 
can be achieved by adaptation of the objective function that is to be minimised using the 
Frank-Wolfe algorithm.  See Sheffi (1985)5. 

8.2 Traffic assignment models for public transport networks 
 
There is an essential difference between a network for public transport and one for private 
transport, such as a car network.  The public transport network is based on lines, where 
services are maintained by a number of vehicles.  The capacity of a line is linked to the 
passenger capacity of the vehicle and the frequency of the service. 

8.2.1 Travel impedances in public transport 
The travel time from an origin to a destination by public transport comprises the following 
components: 

• feeder transport from the origin to the busstop or station, 
• waiting time at the busstop or station, 



 

 

105 

• travel time in the vehicle, 
• possible transfer waiting-time, 
• getting from the busstop or station to the destination address.  
 
These components are accounted for in the network by the introduction of links for 
transport to and from busstops and stations and transfer links. The attributes of these links 
consist of the travel times (walking, cycling, etc) involved in getting to and from busstops and 
stations and waiting times. 

In the chapter about distribution, we already saw that, though all time components can be 
measured objectively in minutes,  not all travellers perceive these components identically.  A 
minute spent waiting, for example, is perceived as a greater travel impedance than a minute 
of effective travel time in the vehicle.   

To determine the travel impedances, financial costs converted to generalised travel time, 
must be added to the time components mentioned above. 

8.2.2 Waiting times 
 

We use the following notation: 

f = frequency (vehicles per time-unit) 
h = interval between two vehicles (=1/f) 
t = travel time between stops 
w = waiting time 
λ = travellers per time unit (demand) 
 
The time spent waiting at a stop that is served by one service depends on the interval h 
between two vehicles (i.e. on the frequency of the service) and on the variance of the 
intervals. 

 

 

Waiting
passengers

λh1

     h1    h2       h3

λ

time

 
Figure 8-5  Waiting passengers at a public transport stop 
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Assume that the arrival pattern at a stop is λ  passengers per time-unit, uniformly distributed 
over time.  Consider K intervals.  The aggregate waiting time W for all travellers equals the 
surface of the triangles in Figure 8-5. 

W hk
k

K

=
=

∑ 1
2

2

1
λ  

 
The following applies to the number of travellers N  that arrives at the stop: 

N hk
k

K

=
=

∑ λ
1

 

 
The average waiting time per traveller, therefore, is: 

 

w h hk
k

K

k
k

K

=
= =

∑ ∑1
2

2

1 1

/  

 
We can now write this as a function of the means of h2 and h: 

w h h= 1
2

2( / )  
 
A general expression for the sample variance Sh

2 is: 

S h hh
2 2

2
= −  

 
So the mean waiting time can be written as: 

w h S hh= +1
2

2( / )  
 
Half of the interval is often used for the mean waiting time (when travellers arrive uniformly 
over time).  The derivation above shows that this applies, strictly taken, only when the 
variance of the intervals equals zero, i.e. in the case of a completely regular service.  In the 
case of random arrivals, the average waiting time exceeds half of the mean interval duration! 

Example: 

Assume: 

mean duration of interval h = 10 min  and standard deviation Sh = 10 , therefore 
Sh

2 = 10 

Then:  w = + =1
2 10 10 10 55*( / ) . min   

 
Although this is a most interesting outcome, it can be accepted that most services are fairly 
regular which leads to a mean waiting period equal to half the duration of the interval period. 

If the service frequency is low, the arrival time of travellers at the stop will not be uniformly 
divided, but will reflect the expected departure time of the bus or train.  Observations have 
shown that there is an upper limit to the mean waiting time of 5 to 10 minutes, say 7.5 
minutes. 
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Waiting times at parallel lines 
It is possible that a route between two nodes is serviced by one or more lines.  We give an 
example of the kind of reasoning that can be used to calculate the mean waiting times in that 
case: 

Case 1 
The simplest case is the one where the travel times between the two stops are equal for all 
lines.  It is then usual to set the average waiting time for all lines equal to half of the interval 
time that appertains to a frequency equal to the sum of the frequencies of the individual lines.  
Passengers, for example for line 1, will on average not have waited longer than that, since it 
would otherwise have been better to take one of the other lines.  However, be aware that 
the approach above can lead to erroneous results if the lines depart at fixed intervals. 

 
Case 2 
Assume that the travel times between the stops differ for the different lines.  A lower line 
frequency, for example, could be compensated by a shorter travel time.  It is easy to see 
that in such cases frequencies can not be added up.  Calculating the mean waiting time can 
now become very complicated. 

Assume that there are two lines with t1 < t2.  The travellers will then show a preference for 
line 1, unless t2 exceeds t1 only by a small amount.  If t2  <  t1 + ½ h1, some travellers will 
take line 2 all the same.  We could now use the following approach: 
if t1 = t2 then add the frequencies,  if t2  >  t1 + ½ h1 then do not add them at all and apply 
a special calculation in between these two cases. 

One often refrains from this refinement and, in the case of unequal travel times between 
nodes, calculates waiting times equal to half the interval time of the individual lines. 

 

8.2.3 Shortest route in a public transport network 
The usual algorithms that are used to find a shortest route in a road network require 
adjustment when applied to a public transport network.  The option of transfers and 
associated waiting times cause anomalies, as illustrated in Figure 8-6. 

 

1

32B 12

         A 10

B 3

Transfer    5

 

Figure 8-6  Problem finding shortest route by usual algoritms in publ. tr netw. 7 
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The journey from node 1 to 3 via line B takes 12 + 3 = 15 minutes.  Via line A and B with a 
transfer at node 2 it takes 10 + 5 + 3 = 18 minutes.  Therefore, the shortest route from 1 to 
3 follows line B, but the shortest route from 1 to 2 follows line A.  This means that, 
depending on the destination, node 2 can be reached by various routes.  This leads to 
problems in terms of the classical algorithms, because there is no unambiguous shortest route 
tree from node 1.  One solution would be, for example, to introduce additional links after 
which the usual shortest route algorithms could be applied.  Another solution is to develop 
specific algorithms for public transport networks. 

To give an idea of an algorithm that was specifically developed for public transport we will 
describe a method that is known under the name Transitnet (described in Lamb en Havers 
(1970)8. 

The transitnet algorithm is illustrated by an example.  See Figure 8-7.  Say that we want to 
find/determine the shortest route tree from node 1.  For the sake of simplicity we will leave 
the waiting times out of the consideration. 

 

Essentially, the algorithm works as follows: 

We first find all the nodes from the starting point that can be reached without transfers and 
the time required for these journeys.  Next we find all the nodes that can be reached by one 
transfer.  If the time involved is smaller that that for a route we found earlier, we adjust the 
time and route.  The same procedure is repeated for two transfers, etc, until the identified 
routes to all nodes no longer change. 

In more detail: 

Each node receives a label of the form (L.K.T.) with the following meaning: 

L the line last taken to reach this node 
K the node where the transfer to this line is made 
T the time needed to reach this node 
 

Line A   1-2-5-6-7
Line B   2-3-4-5
Line C   6-8-7
Line D   5-6-8

7 6

8

5

2

4

3

1

    C 4         C 3
   D 1

A 12 A 6
D 7

      A 10

B 1

     B 3

B 3

     A 4

 

Figure 8-7  Example finding shortest route in publ tr network.8 
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Moreover each node also has a [+] or [-] sign that indicates if there are of lines emanating 
from this node that still need to be investigated. 

 

 

The algorithm looks as follows: 

Initialisation: 
The starting node gets the label [0.0.0] and the indicator [+].  All other nodes get the label 
[0.0.∞] and the indicator [-]. 

 
Repeat as long as there are [+] indicators: 

Step 1: 
Choose a node with a [+] indicator. 
Investigate all the lines that visit this node, excepting the line by which one arrived at 
this node.  This yields new temporary labels for all the nodes that can be reached 
from this node without further transfers. 

  Knooppunten 
Lijnen 
vanuit 
knoop 

 
 
Lijn 

1 2 3 4 5 6 7 8 

  0.0.0 0.0.∞ 0.0.∞ 0.0.∞ 0.0.∞ 0.0.∞ 0.0.∞ 0.0.∞ 
  + - - - - - - - 
1 A  A.1.4   A.1.14 A.1.20 A.1.32  
  0.0.0 A.1.4 0.0.∞ 0.0.∞ A.1.14 A.1.20 A.1.32 0.0.∞ 
  - + - - + + + - 
2 B   B.2.7 B.2.10 B.2.11    
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.∞ 
  - - + + + + + - 
3 --         
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.∞ 
  - - - + + + + - 
4 --         
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.∞ 
  - - - - + + + - 
5 A 

D 
A.5.25 
 

A.5.21    A.5.17 
D.5.18 

A.5.29  
D.5.19 

  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 A.5.29 D.5.19 
  - - - - - + + + 
6 C 

D 
     

D.6.24 
 C.6.24 C.6.20 

D.6.18 
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.6.24 D.6.18 
  - - - - - - + + 
7 A A.7.56 A.7.52   A.7.42 A.7.36   
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.6.24 D.6.18 
  - - - - - - - + 
8 C      C.8.21 C.8.22  
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18 
  - - - - - - + - 
7 A A.7.54 A.7.50   A.7.40 A.7.34   
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18 
  - - - - - - - - 
  0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18 

Table 8-4  Transitnet algoritm.8 
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Set the indicator for this node to [-]. 

Step 2: 
Update the labels and indicators. 
Compare the new labels gained in step 1 to the existing labels. The labels of the 
nodes concerned are only adjusted and their indicators set at [+] if the new travel 
time is smaller than the travel time already achieved. The labels and indicators of the 
other nodes remain unchanged. 

 
Table 8-4 shows the results when this algorithm is applied to the example. 

The last line of the table holds all information necessary to reconstruct the shortest route 
tree.  Say that we are looking for the shortest route from node 1 to node 8.  Node 8’s label 
(D.6.18) states that the earliest possible time we can arrive at this node is via line D from 
node 6 and that the journey took 18 minutes.  In turn, we can reach node 6 (according to 
the last line in the table) in 17 minutes at the earliest and we can do so via line A from node 
5. Working back like this to node 1, we find the shortest route given in Table 8-5. 

This example took no account of waiting times.  The description of the algorithm shows, 
however, that the introduction of waiting times and the associated weighting of time 
components will not be problematic. 

8.2.4 Assignment models for public transport 
The description of the assignment algorithms for car traffic showed that the methods can be 
divided into a number of categories: 

• All-or-nothing assignment 
• Stochastic assignment 
• Equilibrium assignment 
• Stochastic equilibrium assignment 
 
The same algorithms can be adapted to be used for assignment in public transport.   

For the all-or-nothing assignment, the same applies as was already pointed out for the 
assignment of road traffic: the method can deliver reasonable results in a non-congested 
network, when there are few alternative routes between an origin and a destination and 
when these few alternative routes also differ widely in terms of travel impedance. 

As in a car network, several routes can exist between two points in a public transport 
network.  A characteristic of the public transport network is that there are several alternative 

 
Knooppunt Tijd Neem lijn 
1 0 A 
2 4 B 
5 11 A 
6 17 D 
8 18 - 

Table 8-5  Shortest route between two nodes in a public transport 
network. 
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travel routes coinciding in location.  Train travel, for example, offers a choice between 
express trains and local trains. Bus networks also offer different lines which partly follow the 
same route.   

Even when these alternative routes do not share the same travel impedance, travellers will 
distribute themselves over these routes.  This happens, just as is the case in car networks, 
because not every traveller is fully aware of the travel impedances in the network.  Link 
travel impedances, moreover, are judged differently by different travellers. 

Stochastic assignment models are used to find the distribution of travellers over alternative 
routes.  This can be done in two ways.  The first method distributes the travellers in function 
of the frequencies and/or travel times along the alternative routes; the second uses simulation 
(Monte Carlo method). 

The first method has several options: the passenger flows can be distributed proportional to 
the line frequencies, or they can be distributed proportional to the e-powers of the weighted 
travel- and waiting times (logit model). 

The second method is very similar to the simulation method used in the assignment in car 
networks.  Drawing lots is now used to find the waiting times and the choice of lines with 
equal length along the same route.  The shortest route tree is calculated after each draw of 
lots. 

The all-or-nothing and stochastic assignments above take no account of changes in travel 
impedances caused by network overload (congestion). 

In the assignment in car networks, the models that do take account of changes in travel 
impedance of a link due to traffic congestion are called equilibrium models. 

Congestion in public transport networks can occur when the traveller demand exceeds the 
capacity of the system.  Besides the line frequency, capacity is particularly linked to vehicle 
capacity.  The algorithms for the equilibrium assignment in car networks could, in principle, 
be adapted for public transport networks.  This, however, is hardly ever done.  Since real 
congestion of public transport networks rarely occurs, equilibrium assignments are hardly 
ever used. 

8.2.5 Closing remarks 
Some aspects of the route determination process have not been dealt with in this discussion. 

• First, there is the influence of tariff structures.  In choosing his route, the traveller does 
not only look at the duration of the journey, but also the costs.   Some transport 
operators apply tariff structures that are not directly in line with the transportation effort.  
There may not be any relationship between the tariff and the distance travelled, think of 
season tickets for the entire network, for example.  Such situations complicate the 
application of conventional assignment techniques.  Assignment computer programmes 
that can take complicated tariff structures into account do, however, exist. 

• Secondly, there is the interaction between some forms of public transport and road 
traffic.  Busses, for example, that use the car network directly experience the influence 
of any congestion on that road network.  Here too, methods have been developed that 
can incorporate this interaction. 
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