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1. An analysis of the transport system

Transport arises as a consequence of the spatia division between economic and socia
activities. Theam of this chapter isto describe the interaction between the tota of sociad
and economic activities and the trangport system. The conceptua modd that ensues serves
as aframework in which the other subjects to be discussed in this course can be placed in
their correct context. The description is based on Manheim [1979]*°. The chapter closes
with some remarks about the role of moddling in traffic planning.

1.1 Social change

Society undergoes congtant change. Due to the strong interactions between the transport
sector and society (traffic largely derives from socid life and its associated pattern of
activities) changesin the socid sphere can have important consequences for the functioning
of the trangport system.

Basicdly, there are three separate types of changes that affect the functioning of the
transport system.

Changes in the demand for transport. Population increase, increased incomes and
changesin land-use affect the demand for transport.

Changes in transport technology. Technologica innovation is not confined to the
different means of trangport only. Innovation adso occursin the form of new transport
concepts such as specid lanes for target groups, information systems for the travelling
public, road pricing, etc.

Changes in value judgements. Decisionsin the trangport sphere can have far-reaching
implications. Today there is agreater gppreciation of the socid consequences of
particular measures and of the environmenta impact inherent in traffic.

Wewill begin our andyss with a systemétic description of the trangport system and of its
interaction with its socio-economic environment. Next, we will identify the options that are
avalable to influence the direction of development and to determine the effects of these
steering measures.

The basic assumptions of the andyss are asfollows:

The trangport system in an arealis seen as a coherent multi-moda system. Theterm
multi-modal means that anumber of forms of trangport or "moddities’ areincluded in
the equation. The term transport system refers to the totdity of transportation modes,
networks, terminalss, transportation services, etc.

Because of the large number of interactions, the transport system can only be looked at
in conjunction with the socid, economic and political pattern of agiven area. From this
point, we will cal thisframework of socia, economic and palitica activitiesthe activity
System.

% Notesrefer to the list of references at the end of the text.



1.2 Interaction between the transport system and the activity system

Fgure 1-1 shows the interaction between the transport system T and the activity system A.
Theinteraction between these systems results in aflow pattern F in the multi-modal
network. By theflow pattern F we mean the totdity of transportation flowsin terms of
origin, destination, trangportation modes, routes, departure times, volumes, etc. and the
asciated leve of service of the traffic system, for examplein terms of trave times. In fact,
the F variable describes the Situation of the transport system at a particular moment in time.

Transport
system

Activity

system
A

Figure 1-1 Interaction between transport system and activity system.*

The following relationships are indicated in Figure 1-1.

Reationship 1: A given trangport syslem and a given activity system will result in agiven flow
pattern on the multi-moda transport network.
Reationship 2: The use of the multi-moda network, aswell as the associated level of service

in the traffic system and the consequent use of scarce resources will lead to dterationsin the
adtivity system.

Rdationship 3: The use of the multi-moda network, and the traffic pattern associated with it,
will lead ingtitutions and operators to dter the qudity of their services and their infrastructure.



1.2.1 Transportation Options

There are many ways of intervention both in the trangport system and in the activity system.
It isimportant to redise that different groups can make different decisons. These include,
for example, individua customers of transport services, travel operators thet offer travel
sarvices, and indtitutions that formulate and execute trangport policy. The opportunities for
intervention, the options, can be formulated both for the transport system and for the activity
sysem.

Asfor the transport system, options for the following aspects are available:

Technology. Examples here are the introduction of new transportation concepts such
as containers, the development of new propulsion techniques and innovations in the area
of road congtruction.

Networks. Networks are defined by a set of nodes and a set of links that connect the
nodes. One can choose between al kinds of network configurations such as radid,
concentric or grid patterns. I1n addition, the properties of networks can be changed.
These properties, such as capacity and speed limits are often attributed to the network
links.

Vehicles. The number of vehiclesto be used and their properties can be influenced.
Such decisions can be taken by managers of transportation companies, but aso by
policy makers through legidation.

System operating policies. Regulation can be done through price intervention,
subgdies, or other fisca measures. Regulation can aso be done through the legidature.
Also included are operationd decisionsin respect of scheduling, types of service to be
offered, and routing.

Organisational policies. The structural organisation of the transport system hasits
repercussions on the trangport system. Here one can think of the distribution of
respong bilities between the various indtitutions or of the internal organisation insde
transportation enterprises.

In the activity system, the options can dso be divided into a number of categories:

Travel options. This concerns the options available to every potentia user of the
trangportation system, i.e. the choice whether or not to travel, the choice of transport
mode, the time of travel and the route. The combined result of al these choices
congtitutes the demand for transport.

Spatial dispersion of population and economic activities. Economic and socid
factors determine the location of residence and the place of work as well as the scale of
the economic activity. They aso influence the need for trangport. This applies, on the
one hand, to factors that can be actively directed through the implementation of
government policy. And on the other hand it gpplies to processes which are free from
outsde intervention. In both cases, however, we speak of optionsin the activity system.



1.2.2 Consequences or impacts of transportation

The consequences or impacts of the measures to be taken are manifold. Furthermore, the
consequences may turn out to be positive for one group and negative for another. This
agpect must be born in mind during the evaluation process. A possible subdivision of the
consequences may be asfollows:

User impacts. These apply to the individua traveller and those in the goods
trangporting business. The load on the trangport system is experienced by the user in
terms of travel times, costs, comfort, etc.

Transport operator impacts. These concern the consequences for the operators of
public transport companies, etc. Here, costs and returns are important factors.

Environmental impacts. Impacts on the environment, such asair pollution, noise
pollution and fragmentation of the landscape have gained in influence on the design of the
transportation system

Functional impacts. These are the implications for the functiona quality of the activity
system. One can think of changing incomesin retall outlets and in land prices.

Governmental impacts. The impacts of the trangport system can lead to adminigtretive
consequences in the area of legidature, in the dlocation of responghilities, etc.

1.2.3 The prediction problem.

We must now find away to predict the consequences of avariety of available interventions
or options. It isimportant that the implications are optimaly estimated or calculated in order
to guarantee maximum certainty in the solution to a problem that has been identified, or to
redise aformulated target. This problem of prognosis has been schematised in Figure 1-2.
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Technology mpacts
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Figure 1-2 The prediction problem.*

To caculate the effects of interventions on the transport system, we need to predict the flow
pattern F for agiven trangport system T and a given activity sysem A.

1.3 Demand and supply on the transport market

The gtarting point in the prognosisis that amarket can be identified for the transport sector
that functions independently of other markets. The following variables and functions are
important in describing the functioning of this transportation market:

Vaiables

T the transport system

A the activity system

F the flow pattern

S the level of service (trave times, fares, etc.)
Vv the volume of the traffic flows

Functions

J supply function: S=JV,T)

D demand function: V=D(SA)

A supply function (see Figure 1-33a) givesthe levd of service as afunction of the volume of
the treffic flows in any given trangport system. In economic terms, asupply function
indicates the behaviour of the supplier of producer. In our case, the supply function
indicates the service that a given trangport system can offer at different rates of traffic flow.
Thisiswhy the supply function is sometimes cdlled a service function. Theleve of service



incorporates a number of dements. Amongst these, the travel time and the costs of travel
are important elements. Changes in the trangportation system change the shape of the
supply function.

A demand function (see Figure 1-3b)describes the size of the transport flows as afunction
of the levd of sarvicein agiven activity sysem. The function is read garting from the
vertica axis. Asthelevd of servicerises, so the demand rises. Changesin the activity
system lead to changes in the demand function.

Theflow pattern F of the multi-moda network is defined as the combination of the
transportation flows V' with their associated level of service S. Theload pattern F° = (V°,
S’) for agiven trangportation system and a given activity system can be caculated on the
basis of the equilibrium that emerges between demand and supply, asindicated in Figure
1-3c.

a S‘r T constant A constant

<V
<

Figure 1-3 Equilibrium on thetransport market.!

In addition to the generd case as shown in the previous figure, Figure 1-4 shows two other
functiond relations.



Do note that the verticd axis now showsthe trave time, not the levd of service. The travd
timeis taken here as amessure of the sarvicelevd. Thisleadsto areversa of the vertica
axis.

The first example, Figure 1-4a, concerns a constant supply function. This could apply to a
road of infinite cgpacity, for example. Travel time does not dter asaresult of achangein
traffic volume.

The second case, Figure 1-4b, shows a constant demand function. The demand is not
responsive to changesin the level of service. This could gpply to passengers, for example of
public transport, who have no alternative trangport options. These are sometimes cdled
forced travellers or "captives'.

! '

a b.

Figure 1-4 Congtant supply and demand function.*

1.4 Consequences of the introduction of new transportation facilities

When the flow pattern indicates congestion at certain points, government ingtitutions can, for
example, decide to provide new infrastructure. Public transport companies can aso decide
to adapt their services. This feedback from the flow pattern to the transportation system
wasindicated by relationship 3in Figure 1-1.

So what happens when the trangportation system is altered? Let’s assume that the new
transportation system is an improvement on the old one. Figure 1-5 shows the supply
function for both the old system (J°) and the new system (J%).

Again, asin Figure 1-4, the vertical axis showsthetrave timel Anincrease in the time spent
travelling means alower leve of sarvice.

If we were to introduce a new improved transportation system immediatdly, thiswould lead
to areductionin trave time. A new equilibrium will occur in which the reduced travel time
will entice more consumersto aval of the service. The equilibrium is achieved with the
vaues V! and tt.

We must, however, keep in mind, that the time-Iapse between a possible identification of
insufficient cgpacity and the planning and bringing on steam of additiona capacity will take
many years. In other words, by the time the new service is eventudly introduced, the
economic and demographic developments, such as population increase, increased car-
ownership and so0 on, have led to an atered demand function from D° to D2.



F

Figure 1-5 Equilibrium in the short and long run.*

The new equilibrium F2 will be achieved several weeks or months after the introduction of
the new sarvice. Thistime-lgpseisafunction of the adjustment required by people to
familiarise themsdves with the changed departure times, routes or transport modes. We call
this equilibrium that was indicated by reaionship 1 in Figure 1-1 the short-run equilibrium.
It emergesthrough changesin travel behaviour.

Theimproved qudity of the transport system, moreover, induces another development.
Firmswill gopear in areas that have become more accessible, people on higher incomes will
move out of town to settle in easily accessble rural aress, etc.  1n short, reacting to and
sometimes even anticipating changes in the qudity of the infrastructure, relocation of
activities and possible new developments can occur. Due to the improved transport system,
people will chooseto live at a greater distance from their workplace and new customers are
likely to come forward to use the improved transport system. Thiswill, initsturn, giverise
to an increase in the demand function. The demand function will shift to ahigher levd. This
processis caled “activity shift” and is shown in relationship 2 of Figure 1-1. This
development isadow one and so the demand function D3 of the new Stuation in the activity
system will only be redised in the long term. The equilibrium F3, which is a consequence of
dterationsin the activity system, is cdled the long-run eguilibrium. Thisequilibrium will
usudly not be achieved because new services will in the meantime have been introduced
which will indine the sysem towards a new equilibrium. The long-run equilibrium, therefore,
may serve to indicate trends in development.

Note, in Figure 1-5, that the travel timet3 in the find gtuation is higher than the origind
travel timet° with which we began our andysis. Theleve of service has, therefore, gone
down, in spite of the provison of new infragtructure! Thus there is a possibility thet the



implications of the introduction of a new service on the demand pattern are such asto
eventudly reduce the qudity of the traffic system in the new Situation.

If, as explained above, the qudlity of the transport system has decreased in spite of the
introduction of new traffic facilities, it would not be correct to conclude that the provison of
this new facilitieswas pointless. After dl, the volume of traffic in the new Stuaion isaso
much larger. Circumstances determine whether we can spesk of afavourable or
unfavourable development. Remember that the increased demand is the result of a shiftin
the activity sysem. This can, on the one hand, imply that the same number of userstrave
longer distances. Or it can mean that the distance travelled per user shows a nomina
increase only, but that the number of users hasincreased. A combination of thetwo is,
naturdly, dso possble. If the increased demand was mainly afunction of anincreasein
distance travelled by users, one could spesk of an unfavourable effect. Where the provision
of the new transport service leads to mobility for more users, one could - with some
reservation - seethis as a posgitive result.

We refer the reader to chapter 5.3.1 for additiona observations regarding the consequences
of changesin the transport system.

1.5 Model types

Based on the andys's above concerning the mechanisms of equilibrium that apply to the
trangport market, alist mode types can be drawn up that are required to ca culate the
consequences of policy measures. These concern the following modes.

Demand models that determine the scde of demand as afunction of the service levd.

Supply models that, depending on the measures to be taken, determine the level of
sarvice as afunction of load on the network.

Short-run equilibrium model s that, on the bas's of demand and supply, determine the
scae of the traffic flowsin a network.

Long-run equilibrium models that describe the interactions between changes in the
infragtructure and the spatid digtribution of activities.

Impact model s that indicate which implicit consequences are involved in the provison
of improved service levels, such as the necessary investments, environmental impacts,
socid effects, safety, etc.

We need models that belong to the five types described above, to solve our problem of
prognosis, which was schematicaly presented in Figure 1-2.

Figure 1-6 shows the aforementioned model typesin their mutua context.
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Figure1-6 Model types needed for prognosis

1.6 Practical implementations of the conceptual model

The conceptua model presented in this chapter can be used to place the multitude of
complex transport phenomena that we encounter on adaily bass, in their gppropriate
context. The modd provides an indght in the fundamenta interactions between the transport
system and the socio-economic system in which it isembedded. The modd is Hill too
abdtract, however, to serve as abasis for making transport calculations.

In chapter 2, we will discussthe traditiond traffic demand modd. Thismode isused in
many places around the world to make red trangport caculations. The traditiona traffic
demand mode consists of a number of sub-models, which we can see as practical
implementations of the conceptual mode discussed in this chapter.

Beow isan overview of the 5 types of modd described above and their parale inthe
traditiond traffic demand modd.

Demand models appear in the traditiond traffic demand modd in anumber of sub-
models, namely the production/attraction model, the distribution model, and the
mode choice model.

Supply models are reflected in the so-cdled time-loss functions, which indicate the
relation between travel time or travel costs and the flow rate on road sections.
Short-run equilibrium modes are used in the so-cdled assignment models, which
determine the routes in a network, by taking into account that traffic flows themsdaves
influence the trave times on links in the network.

Long-run equilibrium modds, which reflect the influence of the flow pattern on the
activity system, are often implemented in the form of a scenario-approach. Here one
postulates a certain plausible future socio-economic development that is used to
calculate the consequences for the transport system. Then there are models that try to
directly predict the effect of the flow pattern on the spatia and socio-economic
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development. However, in practice these models are, as yet, little used. We will not
discuss such long-run equilibrium modes in this course.

Impact models have been developed in large numbers. There are models that can
cdculate the impact of traffic on ar pollution, noise pollution and safety. Because these
models are very specidised, they will not be discussed in this generd introductory
course.

1.7 Models in the planning process

Figure 1-7 indicates where in the planning process, the prediction model can be applied.
(Models can dso be used in other phases of the planning process. Because they are not
discussed in this chapter, these models are not shown in the figure.)

Problem

\
Obijectives

\
Generating options

\ Criteria
Prediction model [ Prediction
\
Evaluation I
\
Choice
\
Realisation

Figure 1-7 Planning process.

There are some important reasons why models are used:

A modd, especidly if it isin the form of a computer programme, enables one to include
complex interactions that could easily be overlooked without the use of models or that
could beincorrectly interpreted. A model does not always have to come in the form of
acomputer gpplication, but it lends itsdlf very well to the purpose.

When one compares them to the implementation costs, modd calculations are avery
cost- effective means by which to give answers to the consequences of various
dternative options. However, one must keep the limitations of modelsin mind. Using a
model means that concessions are made in regard to the reproduction of redlity.

Modds are asmplified reproduction of a part of redity. If thiswas not so, we might as
well take redlity itsdlf as our modd.
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We conclude this chapter with some important criteria needed to assess the prognosis
models.

Relevance. The modd must be able to caculate the impact of every sngle measure of
intervention that one wants to investigate.

Accuracy. The results of the model and the observations must agree to areasonable
extent. Notethat it isunredigtic to expect grest accuracy in traffic models, when
compared to models in the exact sciences. Traffic engineering is no exact science, but a
field of knowledge that lies between the exact and the socid sciences.

Theoretical foundation. The formulation of the modd should, idedly, be based on a
solid theoretical foundation. Those modd s that depend on asmple extrgpolation of
observed behaviour have only alimited field of application, both in place and time.
Smplicity. The smplicity of amode should be seen asits mark of quaity. Generdly,
smple modds are d'so morerobug, i.e. they are more resstant to input errorsthan
complex models.

Validation. Matching the modd results with the observationsis called the cdibration or
the empiricd fitting of amode. Vaidating amodd, however, means testing the modd’s
capability to make predictions. Here one must not use data that have been used in the
cdibration. Every mode should be properly validated.

Practical applicability. One must be ableto gpply the modd in the framework drawn
up in regard to available time, funds, and personnd. Thisreates particularly to the
gathering of input data required for the modd.

1.8 Summary

Trangport evolves primarily through the spatial separation of economic and socid activities.
The combined socid and economic activities, including the political and other consultative-
and decison-making structures, is called the activity sysem. The activity system represents
the demand ddein the redisation of transport. The totdlity of transportation servicesis
caled the trangport system and this represents the supply side. Demand and supply result in
an equilibrium, the flow pattern. The flow pattern is expressed in a particular volume of
transport with attendant attributes such as travel times, levels of congestion, etc.

The equilibrium is dynamic, not getic, in that acertain volume of trangport can, iniits turn,
trigger changes in the activity- and the trangport systems, resulting in anew equilibrium. This
processis one of perpetua change.
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2 Structure of the traditional traffic demand model.

In this chapter we give an introduction to the traditiond traffic demand modd. This mode
can be seen as an eaboration of the conceptual model described in chapter 1. The modd is
caled the traditiond traffic demand model because years of research and gpplication have
led to acommonly accepted mode Structure. This structure evolved in the Sixties and
remained more or less the same in Spite of enormous progressin modelling techniques.

The development of traffic demand modds began in the fiftiesin the United States, where
elaborate models were built amongst others for the cities of Detroit and Chicago. In the
gxties, traffic models began to be used in England. From England it spread to the rest of
Europe. The widespread use of traffic moddling in Handers began relatively late (in the early
nineties). Today, every province hasits own multi-modd traffic modd.

Thereis an extengve library of literature on the topic. One of the best referencesis Ortlzar
and Willumsen (1995)°.

We begin the trestment of the Structure of the traditiond traffic demand modd with a short
expodgtion of the function of thismodd and a discusson of some of thetermsused in
common modd theory.

2.1 Function of the traffic demand model

Both the activity- and the transport system are subject to constant change. These changes
either occur autonomoudy, or they are planned. By autonomous devel opments we mean
societa changes outsde of our sphere of influence. Examples include technological
developments, changesin incomes structures, changing attitudes towards work and leisure
time, etc. Developments can dso result from ddliberately planned intervention. Examples
here include the congtruction of new infrastructure, measures to stimulate aternative means
of trangport, for example through pricing mechaniams, the pursuit of particular planning
godls, etc.

The function of the traffic demand mode that will be presented in this chapter isto caculate
the equilibrium that results from a given Studtion in the activity- and the transport system
(short-run). The caculated traffic flows can be used to design traffic facilities. Very
important also are the externa effects of traffic flow. Here, one must mainly think in terms of
negetive effects such as environmenta degradation, loss of time and money, and congestion
induced irritation.

In chapter 1 we showed that the traffic flows influence the activity system and the transport
sysem. The effects are largely long-term, and include such processes as the rel ocation of
work and living areas and the adaptation of current infrastructure or the congtruction of new
infrastructure.  Current traffic models are not quite up to handling such feedback. Possible
quantitative mode s that could adequately describe this complicated process are ill in the
devel opment phase.



14

Below are anumber of questions on traffic flows that can be explained using travel demand
models.

How does the trangport pattern in an area change following the congtruction of anew
motorway?

What are the consequences of |ocating employment to the outskirts of acity?

Which are the optimum locations for work- and urban areas to be assigned in aregion?

These questions give an idea of the scde levd to which traffic modds tend to be applied.
The traffic models that are dealt with in this chapter work at the level of an urban areaor a
region such asaprovince or county. They definitely do not ded with the description of the
traffic pattern on asingle road or junction.

2.2 Model concept
A modd isasmplified representation of a part of redlity.

Models can be classified according to their way of representation. The representation can
be concrete or physicd, asin scde models. Abstract models belong to atotdly different
class. There are many kinds of absiract models. Thekind of modd that interests usin this
chapter isthe mathematicad modd. The traffic modd isamathematicd modd. We will
return to the common dructure of a mathematica modd later.

We can a0 classfy modds according to their end-use. Here, we distinguish between
descriptive, predictive and normative models. Descriptive modds are confined to the
schematic representation of a phenomenon. They do not aim to explain this phenomenon.
A predictive modd, or aprognoss modd, has agreater reach. Starting from the current
date of a phenomenon, and having knowledge of probable future influences, it is used to
predict the future Stuation. One can follow a simple trgectory, for example, by
extrapolating trends. Or one can try to reach a deeper understanding of the relevant
phenomenon by developing atheory. In the last case one speaks of acausd modd. The
classic traffic demand modd that we will discuss later on is an example of acausa prognosis
modd. Then there are normative models. Here one decides on a particular norm or
objective, namely agod function, or an objective function that needs to be optimised. Next,
one attempits to determine which conditions need to be met in order to achieve the optima
gtuation. Normative models also come under the name of prescriptive or optimisation
models.

There are ill more possible classfications. We can, for example, classfy models according
to therole that time playsin the description of phenomena. When the flows in atraffic
modd are time-dependant, we speak of adynamic mode. If we assume that the flows are
constant over a specific period of time, we have agtatic model. Lastly, we mention the
classfication that looks at the role of chance played in the modd. There are many models
that use chance or stochastic variables. These are so-called stochastic models. Stochastic
variables are not used in deterministic models.
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In conclusion, we can Sate that the traditiond traffic demand model that we are to discussis
an abdract, mathematical modd. It isaddtic, largely causd predictive modd, that features
both deterministic and stochastic sub-models. The trend over the last few years has been to
develop dynamic traffic models.

2.2.1 Mathematical models

Mathematica modds, including those in the area of traffic engineering, comprise systems of
mathematica equations where the behaviour of the variable Y is deduced from a number of
variables X;.

Y=1(X.,q)
Where:
Y Dependent (or the to be explained) variable
Xi Independent (or explanatory) variables
a Parameters
Phenomena
Develop theory Ko ;
Mathemat. specification <
Data Calibration
Predict new data
New data Validation not
I ok
(\)II/<
Applicable
model

Figure 2-1 Congtruction of a mathematical model

Fgure 2-1 shows that a specific procedureis followed in the congtruction of amathematicd
model. The process of observation and thought about a phenomenon in the area of atraffic
engineering, leads to the formulation of atheory. Thistheory isreflected in amathematica
specification of the modd.
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The mode-specifications include:
A determination of the functiona form of the equations
A specification of the independent variables

A possible functiond form for atheoretica modd could be alinear additive form such as:
Y=aX +a, X, +...

Or amultiplicative form such as.
Y=aX,X,...

2.2.2 Calibration and validation

In addition to the independent variables X , the specified mathematicd modd shows a
number of parametersa . Cdibrating the modd means that we determine the values for the
parametersin order to ensure maximum agreement between the values caculated through
the modd and the original observations. The observations for atraffic modd from
guestionnaires and traffic counts apply to a specific point in time that we use as a point of
reference. One usudly saysthat the modd is cdibrated for a specific basdine year. Other
terms used for cdibration are: the ‘estimation’” of amode and the ‘fitting' of amodd.

Even when amode had been cdibrated it still does not mean that the model can be used to
make predictions. When there are a sufficiently large number of parameters, it is, in
principle, possble to correctly fit practically every modd. Vdidating amodd means that
the model predictions are compared with new observations. These observations may not
already have been used in the calibration! Itispossble, for example, to validate a
model by using it to ‘predict’ a Situation from the past and to compare thiswith the actua
gtuation in the present. (“back casting”).

A validated model, lagtly, can be used to make a prognosis for a specific target year. This
does require some caution. Traffic models are based on an andysis of observed travel
behaviour. They are, therefore, only vaid for circumstances that do not deviate too much
from the circumstances that form the basis of the analyss. The accuracy of the predictions,
moreover, will decrease as the target year lies further in the future. Thisis so because the
models do not take account of possible gradual changesin traffic behaviour.

2.3 Structure traffic demand model

The scale a which traffic services are used, such as the volume of traffic on aroad and the
number of train passengers on a given route, arises from a number of choicesthat are made
by individua transportation consumers.
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The choices faced by the individud include:

The choice whether or not to travel
The choice of the time of departure
The choice of degtination

The choice of transport mode.

The choice of route.

The ligt above suggests that the choice process congsts of a number of separate choices and
that the choices occur in adefinite order. Thiswill usualy not be the case. Some choices
will be made smultaneoudy, i.e. dl a once and directly inter-linked, and not in a particular
order.

In order to make the problem mathematically tractable, we generdly assume that the choices
can be modd led separately. Asfor the sequence of the modds, the mutud relaionship
between choice of destination, choice of transport mode and choice of departure-time
causes a problem. Because of the interwoven nature of these choices, it is best to group
them in one model segment.

Departure time moddling isimplicitly incorporated in the first sub-model (the production-
and atraction model). This sub-model caculates the number of journeys undertaken for a
specific period, for example the morning peak period.

The sub-modds need input data. The traffic pattern is the result of alarge number of
individua choices. But we cannot modd every individua choice. Combination or
aggregation is unavoidable if we want to achieve aworkable model. The Sudy areais,
therefore, divided into anumber of zones. Theam isto distinguish zones that are socidly
and economically homogenous. Inside azone, trips are grouped with respect to trip-
purposes and person-types. In addition the arealis provided with schematised networks for
homogenous transport modes.

The following sub-models are used (see Figure 2-2)

Production/attraction model. A production model describes the number of journeys
that are generated in azone as afunction of a number of persond characteristics and
characterigtic features of the environment. The total number of journeys produced per
zoneis caculated, without reference, as yet, to the destinations of thesetrips. Thetrips
are specified asto point of time (e.g. pesk or off-peak). A zone can both generate trips
and attract them. An attraction modd describes the totd number of trips that a zone
attracts independent of the origin, asafunction of characteristics such as employment
rate and retall area. The productions and attractions that have been caculated are so
cdled trip-ends. Taken over aaufficiently long period of time, the tota number of
departures that are calculated over the combined zones must equa the total of arrivals.
To thisend, the results of the production- and attraction models are adjusted, if
necessary. Thisis cdled balancing of productions and attractions.



18

/ Zone data /—> Production/attraction

/ Trip-ends /

Trip
impedances —————w»| Distribution/Transport mode |
from network data

/ OD-tables /

Assignment

Lﬁx

Figure 2-2 Structure of the traditional traffic demand mode

Distribution/M ode choice modd

Distribution model. In the distribution mode thetrips originating in acertain

zonei, that have been calculated in the production modd, are distributed over possible
dedtinationsj. Thetripsthat have been cdculated in the attraction modd with zonej as
their destination, are distributed over the possible points of origin i. The connection
between points of origin and destination is caculated as a function of the ease or
resistance with which the distance between i and j can be bridged. Depending on
whether one distinguishes saverd trip purposes or persontypes, the caculaionsin this
sub modd can ddliver one or severa origin-destination tables. In an origin-destination
table (OD-table) the rows of the table represent the origins and the columns represent
the destinations. The entries in the table represent the trips between a certain origin and
adegtination.

Mode choice model. A mode choice modd caculates which type of trangport
travellers use as afunction of persona characterigtics and the relevant transport modes.
The cdculated digtribution amongst the various transport modes is called the “ moda
lit”. The cdculation resultsin afurther subdivison of OD-tables according to traffic
mode.

Traffic assignment model. Even for asingle mode of travel, there often are severd
possible routes between an origin and adedtination. In atraffic assgnment mode (aso
caled aroute choice modd) the trips between the origins and destinations specified in
the OD-tables are assigned to the possible routes in the network according to
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characterigtic of these routes (distance for example). The assgnment is done for each
traffic mode separately, and resultsin the traffic flows on the links of the various
networks. The caculated traffic flowsimply certain definite journey durationtimes. In
order to ensure overdl consstency of the variablesin the modd, the travel duration
times are compared with those used in the distribution/mode choice modd, and if
necessary an iteration step is added.

24 Overview

The discussion of the ructure of the traffic demand modd in this chapter highlights the
sgnificance of the “choice” concept. The observed traffic pattern is the outcome of the
choice behaviour of alarge number of individuas. A generd theory of individua choice
behaviour is needed. One theory that can explain many transport phenomenais the so-
caled discrete choice theory. We will, therefore, precede our detailed discussion of the
traffic demand mode in later chapters by a discussion of this theory.

Before atraffic model can be applied, we need data concerning the study area and
concerning the networks that will be used for thetrips. We will examine thissubjectina
Separate chapter.

The last four chapters will then look at the production/attraction mode, the ditribution
mode, the mode choice modd and the traffic assgnment modd.
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3 Discrete choice theory

The discrete choice theory that will be discussed in this chapter isagenerd theory
gpplicable in stuations where people are expected to choose between mutualy exclusve
dternatives. The discrete choice theory, which originates in the sciences of psychology and
economy, gppeared to be most suitable to the modelling of choice Stuationsin traffic
engineering. The standard reference in this areais the book by Ben Akivaand Lerman
(1985)° .

The basic principle of thistheory is that when an individud is confronted with aStuation in
which he has the choice between a number of mutudly exclusve dterndtives, he will atribute
acetan vauation or utility to each dternative. This utility isafunction of the characteristics
of the dternatives and of the characteristics of the person making the choice. The choice
will fal on the dternative that shows the greatest utility. The problem is that utilities are not
immediately observable and measurable. What can be observed are the characteristics of
the dternatives (as, for example, travel time and costs for a certain travel mode), that we
congder to influence the utility that an individud assgnsto an dterndtive.

We can never be certain, however, that we have accounted for al the characteristics that
influence the utility. And even if weincluded al the characteridtics, the individud will, for
reasons that elude our observation, not aways judge the dternatives in the same way. This
iswhy the utilities are moddled as chance variables. The choice models that are formulated
using the discrete choice theory, will, therefore, indicate the probability with which various
dternatives will be chosen.

The name given to the set of dternatives from which choices can be madeis called the
choice set. Some choice sets are inherently continuous, which means that they contain an
infinite number of dements. Assume, for example, that one must decide on the amount of
basic materiasthat are used in the manufacture of a particular product. Thisisacase of a
continuous choice set. However, in this chapter we are interested in discontinuous choice
&S, i.e. sats which contain anumber of finite discrete pointsonly. This explainsthe term
‘discrete choice theory’.

3.1 Logitmodel

Imagine that an individud finds him sdf in a particular choice Stuaion. He has the choice of
K dternatives. We want to know which dternative he will choose. Now, the discrete
choice theory podtulates that he will assign a certain quantified value to each dterndtive.
Thisvaueisthe cdled the "utility” of the dternative. Having assigned a utility to eech of the
dterndives, he will chose the dternative with the highest utility.

The utility of the dternativei for an individud is afunction of the characteristics of the
dternative and the individua characterigtics of that person. It can hgppen that individuals
who are gpparently in exactly identical choice Stuationsarrive & different choices. Thiscan
be caused by a number of factors:
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Unobserved characteristics. It is possible that we failed to take account of particular
characteridtics that are very important for the individud. Thisfailure can be due to
ignorance, or through alack of data.

Measurement errors. Some characteristics can be subject to measurement errors. If it
isamatter of a choice between two routes, for example, it is possble that the travel
times that have been estimated by the researcher differ from the actua experienced
trave times.

Incorrect specification of the utility function. The utility isafunction of a number of
characterigtics. We usudly adopt asmple linear function of the characteristics. There
are occas ons, however, when the various characteristics need to be combined in a
different way.

The effect of the factors mentioned above isthat the utility that we caculated for a particular
person is an average which leaves room for variation. To account for this Situation, the utility
of the dternative a is written as a stochadtic variable U,, which conssts of a sysematic
(non-stochastic) component V, that represents the observed characteristics of dternative a,
and a sochastic component e, (a so-cdled error term):

U,=V, +e,

Theerror term g, hasa probability distribution with an expected vaue (mean) equd to
zero. Thismeansthat the utility U, has a probability distribution with a mean vaue equd to
the known, observed value V..

The probahility Pr(a) of arandomly picked person choosing the dternative a is equd to the
probability thet the utility of dternative a is greater than the utilities of dl the other
dternatives.

Pr(a)=Pr(U, >U,) voor allek?! a
Example:

Imagine a choice situation with two alternatives:

U,=3+¢g
U,=2+e,

The probability that thefirst alternativeis chosenisasfollows:
Pr1)=Pr(U,>U,)=Pr(3+e >2+e,) = Pr(e - g, >-1)

Assume auniform probability distribution for e between -2 and +2 and that e = 0.
Wethen find that:
Pr(1) = 0.75 en Pr(2) = 0.25.
The example clearly shows that the probabilities of the various aternatives will depend on

the probability digtribution of the error terms. The question arises what probability
distribution we should adopt for the error terms.
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One could adopt a so-cdled Multivariate Normd Digtribution for the error terms. A
Multivariate Norma Didribution is a ditribution where the variances may differ and where
there may be mutua dependency between the probability distributions. Thisisthe most
generd case. A modd using the Multivariate Normad Digtribution for the error termsis
caled aprobit model. The disadvantage of aprobit model isthat it is not possible to write
the resultsin aclosed andytica form and, if one wants to gpply it, Smulation techniques
(Monte Carlo techniques) need to be used. The caculations, moreover, become highly
involved if the number of choice dternatives increases.

The best-known discrete choice modd, the logitmodel, arises when one makes the
following three smplifying assumptions:

First assumption: Approach the Normd digtribution by a Gumbel distribution. This
probability didribution is very smilar to aNormd distribution. However, the
mathematicd form issmpler than that of aNormd digtribution, and amenable to
andytica manipulation. This makesit easer to manipulateit in an anadyss. The
cumulative dengty function for the Gumbe didribution is

F(x) =exp(- exp(- m(x - h)))

Inthisformula ? isthe modus (the highest point) in the distribution, and pLisadispersion
parameter.

The mean of the Gumbedl-didributionis
m=h+g/n g i< Euler scongtant » 0.577

Thevaianceis
s?=p?/6nt

The mean of theerror teermm =0, so0h =-g/m
Fgure 3-1 shows the Norma distribution and the Gumbe-divison, both normaised
with means equa to 0 and variances equd to 1.

Second assumption. Assume that the probability distributions for dl error teerms are
identical, in other words, that dl have the same variance.

Third assumption. Assume that the probability digtribution for dl the error terms are
datisicaly independent.

With these assumptions, it can be shown that the probability of choosing dternative a out of
atotd of K dternativesis.

WA

e
Pr(a) = s~
ka €

We cdl this formulathe multinomial logit model or, in short, the logit model. The name
"logit" derives from the so-cdled logidtic function, which has an S-shaped greph. We will
come acrossit further on in this chapter. The formula shows that the probability that
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dternative a is chosen, depends on the observed utilities of the dternatives, and dso on the
disperson parameter 1. Because dl utility components are multiplied by the same congtant
factor, the dispersion parameter L can, in practice, not be estimated separately. We can
give L an arbitrary vaue. If welet p =1, thelogit model becomes:.

Va

Pr(a) =

[¢}
K evk
k=1

Note that the utilities have been scaled by afactor of 1/ u compared to of the utility
components V, with which we started the derivation of the logit modd.

35|
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Figure3-1 Normal amd Gumbe distributions (normalized)

Suppose that one wants to apply the logit mode to the problem of mode choice. In that
case, the symboals have the following meaning:

Pr@ = the probability that a will be chosen.
Vi = the observable utility of travel mode k
K = the number of dternative travel modes

If K =2, thisiscdled abinary logit modd and if K > 2t is cdled a multi-nomid logit modd.

The observable utilities Vi are, as we said, afunction of the characterigtics of the dternatives
and of the persond characteridics. For this function, one usudly takes alinear function as
illustrated in the following example:
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Example
I magine a situation in which one can choose between three transport modes: car, bus and bicycle.
Assume that the observable utilities V for aparticular group of people (who have the same
personal characteristics) can be given by the following functions:

Vo =10 -0.15* Kooy -010* Ty
Vius = -0.15* Kps -0.10* Tyys
Vbicycle = -05 -0.10* Tbicycle

Inthisexample, T and K are, respectively, travel time and travel costs, and they have the following

values:
Car Bus Bicycle
T (min) 5 15 20
K (BEF*100) 0.20 0.17 -

Now we can cal cul ate the probabilities that a particular travel mode will be chosen by individualsin
thisgroup asfollows:

Vcar =047 Vbus =-153 Vbicycle =-250
Pr(Car) - 0.47/ ( e0.47 + e—1.53 + e—2.50) — 843 %
Pr(bus) =114 %
Pr(bicycle) = 43 %

3.2 Specification of alogit model

The example above the functions for the observable utilities Vi were given. Determining
these functions (this is caled the specification of the modd) isfar from trivid. We can
digtinguish a number of phases in the gpecification process.

3.2.1 Functional form

It isusud to goply alinear function of the cheracteristics. These functions give reasonable
resultsin practice. The advantage of alinear function is that the estimation of the parameters
from the observationsis easer. Specification of alinear function is, however, not
mandatory; non-linear functions are also gpplicable.

3.2.2 Variables
Two kinds of varigbles occur in the functions of the observable utility:

Generic variables are variables with the same coefficient (unequd to zero) in dl
functions for the various dternatives. In the example above, the trave timeis a generic
vaiable. The basic assumption hereisthat one minute of travel time has asimilar impact
on the utility, whether it concerns aminute of time travelled by car, bus, or bicycle.

Alter native-specific variables are used in one or more, but not in dl utility functions
They have the same coefficients in the utility-functions in which they are used. Inthe
example above, travel cogtsis an dternative- pecific variable. An dternative-specific
varigbleis often used in the uility function of only one dterndtive. If we hed, inthe
example above, reason to suppose that the travel time of the three dternatives exerted
different influences on the choice, we would have specified three different aternative-
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specific variables for the travel times of the car, bus and bicycle, and different
coefficients would have been estimated. Congtants are a specia form of dternative-
specific variables (dso cdled dternative- specific congtants). In the example above we
two aterndtive- specific congtants are used.

The example only used characteristics of the dternatives as variables. We worked on
the premise that the functions were estimated for a group of individuas with the same
personal characteristics. In generd, however, the persona characteristics of the
individua who makes a decison could be used in the utility functions. For example,
socio-economic variables such asincome, age, etc. Because the socio-economic
variablesfor one individud will not differ across the various dternatives, they need to be
specified as dternative- pecific variables.

3.2.3 Calibration

When the functiona form and the varigblesin the functions for the observable utilities have
been determined, we can, with the aid of observations, estimate the parameter values
(coefficients). There are standard statistical procedures for this purpose. The estimation of
the parameters of traffic moddsis not dedt with in thisintroductory course.

3.3 Graphic illustration of the binary logit model

Suppose that there is a choice between two dternatives: dternative 1 and dternative 2. This
impliesfor abinary logit modd that:

e’

et +e”

Pr(1) =

Divide the numerator and the denominator by exp(V1) to get:

1

D)=

We now plot Pr(1) asafunctionof (Vi-V,). See Figure 3-2.

The curve that emergesis called alogistic curve. As expected, the probabilities for both
dternaives are equd to 0.5 when the observable utilitiesare equd (i.e. when V-V, =0. If
V, islarge compared to V, (i.e if V-V, >>0). Pr(1) approaches 1 asymptoticaly.
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When the reverse isthe case and V; is much smdler than Vs, Pr(1) approaches 0.

l’1 ’V7

Figure 3-2 Thelogistic curve

3.4 Aggregate and disaggregate models

The logit model discussed above is an example of adisaggregate modd. This means that the
modd describes the behaviour of individuals, or of groups of individuds, who share the
same persona characteristics. The majority of models that we discuss in the other chapters
of this course are aggregate moddls. These modds use averages for large groups of
individuas, for example over azone.

Although a disaggregate model enables us to cdculate choice probabilities on an individud
bass, we are redly interested in the prediction of travel behaviour for an entire area.
Because the logit modd is non-linear, aggregating individua probabilities to probabilities for
an entire areaisanonttrivia exercise. It isnot correct to Smply accept the average values
of the explanatory variables acrossthe entire area. We can illudrate this by an example.
See Figure 3-3.

The correct average vaue for agroup of 2 people A and B is (Pr(A) + Pr(B))/2. If wetake
the average vaues of the explanatory variables we get the incorrect vaue of Pr((Va +
Vg)/2), which isindicated by point C inthefigure. To ded with the problem, a number of
procedures have been proposed. One possible solution is to reduce the aggregation error
by the introduction of a classfication into person types.
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Vg Ve v

Figure3-3 Error made when aggregating by means?

When gpplying the logit modd it is always advisable to use disaggregate data. If these are
not available then there is no other option than to work with average vaues for the
observable utilities over awhole geographica area.  The disadvantages of such a procedure
have been explained above.

3.5 Restrictions of the logit model

The assumptions we made in the derivation of the logit mode, namely identica error terms
with the same variance and mutualy independent error terms, have led to an easily
managesble modd. However, if these assumptions have not been met, the application of the
logit modd will lead to incorrect results.

We will illugrate this by two examples. The problem in both examplesis one of route
choice. Sincethe logit mode can, in principle, be used for al kinds of choice Stuations, it
should be noted that the problems could also occur in other contexts.

Example 1 (non-identical error terms)

When we looked at the binary logit model, we noted that the probabilities for both
dternatives are afunction of the difference of the observable utilities of the dternatives.
Suppose that one writes the observable utility in aroute choice modd as alinear function of
the travel times of the dternative routes. The logit mode would then show that the
probakilities regarding the choice of the various routes that could be taken, are functions of
the difference in trave time between the dternatives.

Observe the route choice problem in Figure 3-4. In thefirgt case (Figure 3-4a), the travel
times along both routes are respectively 5 and 10 minutes. In the second case, travel times
are 125 and 120 minutes. The difference in travel time via the dternative routes s, in both
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cases, 5 minutes. Here, the logit modd would predict that, in both cases, the traffic would
spread itsdlf over the dternative routesin the same proportions. Thisleadsto anillogica
result, for one would not expect thet a difference in travel time of 5 minutes on atotd
journey of 5 to 10 minutes would give the same result asasmilar difference of 5 minutes,
but now over ajourney of 2 hours.

(o] b

10 min @ 5min

V25mn 120min

Figure 3-4 Logit route choice(1).

The cause of the incorrect result liesin the fact that in the derivation of the logit modd it is
assumed that the variances of dl the error terms areidentical. Thisisnot so in thisexample.
The variation in the perception of travel times for long journeyswill be larger than for short
journeys.

Example 2a (error terms not statistically independent)

In the network of Figure 3-5 there are three routes between O and D. Thetrave time aong
each routeis 1 hour. Thelower two routes overlap with one another. The degree of
overlapisindicated by r . Sincethe trave times aong the three routes are equd, the logit
modd predicts thet the traffic will divide itself in equal proportions over the network. Each
route gets 1/3 of thetraffic. If r issmadl, in other words, if the routes show little overlap,
asindicated in Figure 3-5b, then the result appears to be reasonable, because the travellers
will judge the three routes as more or less equa dternatives. But when there is a sgnificant
overlap, asin Figure 3-5c, thisis no longer the case. HAlf of the traffic will probably choose
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the highest route, and the rest will divide itsdf into two parts, each quarter taking one of the
lower routes.

\

o (})D

Figure 3-5 Logit route choice (2).°

The cause of the incorrect results here lies in the fact that the error terms for the dternatives
are not daidicaly independent, athough thisisimplied in the derivation of the logit modd.
Because both lower routes overlap significantly, the error terms are in fact strongly
correlated.

Example 2b (error terms not statistically independent)

Another example where the logit modd gives incorrect results is the so-cdled blue bus-red
bus problem.

Assume that 50% of travellersin a particular city choose to take the car, and the other 50%
the bus. This meansthat the utilities of both transport options are on an equal footing. Now
suppose that the bus company decides to paint haf of the busses blue and the other half red.
The traveller now has three options, namely the car, the blue bus and the red bus. The
utilities of the three dternatives are equa. Thelogit mode will predict that each of the three
dternatives has one chancein 3 of being chosen. Thus, the share held by the car would
lower from 50% to 33%. In redlity the percentage of the car remains at 50% ,of course,
and the other travellers will divide themsdaves evenly over the blue and red busses.
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Just asin the route choice problem of example 2a, the erroneous result is caused by the fact
that the error terms are not statistically independent. The two bus-dternatives are, in fact,
identical, and their error terms are, therefore, completely correlated.

3.6 Hierarchical logit models

3.6.1 Simultaneous or sequential choice

The previous paragraphs have shown that the logit mode is agood and smple instrument by
which to andyse choice Stuations, but that we must be aware of its limitations.

Thelogit modd givesincorrect resultsin the following cases

When the dternatives are not independent (the error terms of the dternatives are
correlated in that case);

When the variances in the perception of the dternatives differ strongly from each other
(the error terms of the aternatives are then not identica).

If we are to use the logit modd in its smplest form we mug, therefore, ensure that the
aternatives are observed as clearly different and independent possibilities. There must dso
be sufficient reason to suppose that the variationsin the perception of a certain dternative
will not diverge too much from the variations in the perception of the other dterndtives.

If the conditions stated above are not met we can use a probit modd instead of alogit
mode. The probit model uses a Multi-Variate Norma Didribution and the limitations of the
logit modd do not apply. The disadvantages of the probit model, however, are thet it can
not be written in amathematically closed form and that, for alarge number of dternatives,
the calculations are very laborious.  In addition, its application requires data regarding the
co-variance between the error terms of the aternatives, and these data are often not
avalable

Another approach that enables us to continue to use the advantages of the logit model, isthe
gpplication of the so-called hierarchical logit model. The hierarchica logit modd is
suitable in those cases in which we suspect that a number of adternatives are corrdlated. In
that case, the choice processis divided over anumber of phasesor levels. It is necessary
that dternatives on the samelevel remain sufficiently distinguishable, in order that alogit
model can be applied on thislevel. Because the choice between dternatives on the same
level happens smultaneoudy, one speaks of a simultaneous choice. It is now assumed that
the choices on the different level s happen one after the other. In other words we are
dedling with asequential choice structure. We will illugtrate this basic idea, one that comes
down to the application of conditiond probakilities, usng a number of examples.

One could, in the example 2a, which was discussed in the previous paragraph, choosg, first
for the highest or lowest route, and only afterwards, if one had decided on the lowest route,
on sub-route 2 or 3.

In the case of the blue bus/red bus problem, the choiceis primarily one between car and
bus. One decides on the blue or red bus only when one hasfirgt chosen in favour of the bus
per se.
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An hierarchicd logit modd can dso be used in the following case. Suppose thereisa
choice of ajourney by car, busor train. This could, to Sart with, be seen asachoice
between private transport (car) and public transport (bus and train). The choice whether to
take the bus or the train only occursin the second instance, when the decision on public
transport has already been made.

)

public
transport

Figure 3-6 Sequential choice structure

An hierarchica logit mode for the last example can be represented in a schematic way as
shownin Fgure 3-6. The adternatives bus and train can actudly be seen asachoicein
favour of public transport. They are, therefore, brought together in a separate level. A logit
modd isused a the highest level in order to determine the shares taken by the car and by
the public trangport. In order to do this one must gve the dternative “public transport” a
utility value. The utility for the public trangport is afunction of the utilities that have been
distinguished for the bus and train separately. The utility of the public trangport sector thus
cdculated iscdled acombined utility.

3.6.2 Calculation method hierarchical logit model

Wewill illustrate the cal culation method of the hierarchical model, using a problem of
destination choice and travel mode choice.

The set of dedtinationsisindicated by D, the set of available travel modesto a particular
degtination d by My.  Suppose we have reason to believe that someone who is about to
travel decidesfirst for destination di D and then for travel mode mi Mg to reach this
degtination. In this case the choice Structure looks like Figure 3-7. Thetotd of avaladle
dternativesis subdivided in anumber of subsets. These subsets consst of anumber of
dternaives that share certain characterigtics so that one can expect the utilities to show
some correlation. These subssts are dso cdlled “nests’. Thisiswhy an hierarchicd logit
modd is sometimes cdlled a nested logit model.
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Vd | \d
D
d set of
destinations
K/dm
M

d
m set of
transport modes to d

Figure 3-7 Calculation method hierarchical logit model.

We envisage the total observable utility of a destination-mode of trangport combination to
be composed from two components:

Vam:  @component in the observable utility that varies with traffic mode m, dso ingde a
certain choice for the detination d.

Vg acomponent of the observable utility that isindependent of the chosen mode of
transport. The only determining factors are the characteristics of the detination d.

From now on we will assume that utilities can be added up. The totd utility of an dternative
isequd to the arithmetical sum of the utility components of that dternative.

The conditiona probability of choosing traffic mode m, given thet destination d has already
been chosen, is given by:

MV
e
Pr(m/ d) = 2

eszdmr

il Mg

If we want to apply alogit modd to the destination choice at the highest level of the
hierarchy, we must assign an observable utility to each of the destinations. This observable
utility conssts of the component Vg, and aso of acombined utility, a sort of replacement
vaue that characterises My, the set of available travel modesto a certain destination d. To
this end, the most obvious solution would be to assign the maximum of the observable
utilities Vgm to the destinations concerned. One must remember, however, that utilities are
gochadtic variables. If we assume that the error termsin anest d show a Gumbel
distribution with a digpersion parameter of m? , it can be shown that the expected value V¢
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of the maximum of the observable utilities of al modes of transport to a certain destination d
are given by:

1
Vg=—1In § e"em

2 mi My
The probahility that destination d will be chosen can now be written as.

my(Vq +V§)

e
Pr(d) = Q e Ve V)

dd D

The probability that the combination of destination and travel mode (d,m) will be chosenis
equd to the probability of destination d multiplied by the conditiond probability of travel
mode m, given destination d:

e™ (Va +Vd) errfzj Vim
— *
Pr(d ] m) é eml (Vge+tVee) é enfvdml:
dd D md My

The dispersion parametersm and m have been maintained in these formulas because they
are not necessxily equd. This plays arole when combining two sequentid logit modds, and
is expressed by the exponentsin the firgt factor of the formula above, wherem ismultiplied
by V¢.

It is not possible to estimate the distribution parameters m® and the utilities Vg, Separately.

Thus we set m® = 1, which means scaling Vg by afactor of Um®. Weadsoset qq=m
/m? , whichleads to the following;

eqd (Vd+|-sd) evdm
- *
Pr(d,m) = é o (Vagt LSue) é @Vars
dd D mé M4

Here

LS, =In § eV

md My

The above expression is cdled alogsum.



Findly, it isnot possible to separately estimate both factorsin the expresson qq Vg. We
assume ascaing of Vg with afactor of 1/q 4. Thiseventudly leads to the following formula
for the hierarchicd logit modd:

Vy+0q4 L V,
edeSd . gVen

Pr(d,m) =

é eVdc"'Qd LSq¢ é evdm¢
dd D md Mgy

In thisformulathe gy are empirically determined parameters. If we now cdibrate the
hierarchica logit modd with the available observations we must determine both the vaues of
the coefficients in the functions for the observable utilities V4 and Vg and the vaues of qg.

To gain consgent results it can be shown that the following must be the case:

m£ m° or, equivaently: O<qe £ 1

Since m the digtribution parameter in the Gumbe digtribution, isinversely proportiona to the
variance, the variance in the error terms at the first leve of choiceislarger, or a most equa
to that on the second choice leve.

If onefindsq =1 for dl nestsd, then the hierarchica logit model is dgebraic equivaent to
the norma (nor+nested) multi-nomid logit modd. Becausein that case we get:

evd X é. evdm¢

Pr d m _ m& Md . evdm _ er + Vdn)
( ! ) - é (eVd¢ X é eVdmm) é evdrm - é e(vd¢+vdcn¢)
dd D md My, mé My dd D,m¢ Mgy,

This means that the utilities allocated by the individua insde a subset are not corrdated and
that, therefore, a sequential choice model should not be used. We are then deding with a
smple smultaneous choice modd.

Avdueof 0<qq4<1 meansthat the utilitiesin anest d are correlated, and the more so as
q 4 pproaches zero.

If, legtly, wefind that g4 £ 0of gq > 1 for anest d, it indicates that the postulated mode
withits subdivison into nestsisincorrect. We must then try another choice structure.

If the choice Structure congsts of alarge number of nests, it may be difficult to estimate a
Separate parameter qq for each nest. For smplicity sake it is therefore assumed that the
distribution parameters m* for &l nestsd at the same level are equal. In that case the index d
may be left out of the parameter qq in the formulas above.

We will look a the problem of smultaneous and sequentia choice structure again in the
chapter on traffic mode choice.
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3.7 Summary

The logit mode, which is one of the modd s of discrete choice theory, is very suitable to
andyse choicesin traffic engineering. The models are based on the assgnment of valuesto
characterise the attractiveness of each of the aternatives. The vauations are called utilities.
Since we do not know dl of the characteridtics that define the utility of an dterndtive, the
utility has a sochastic component. The choice digtribution over the dternativesis givenin
terms of probabilities that can then be aggregated over an area or population group. Inits
amplest form, the logit mode has a number of limitations, which can be partly overcome
with the ad of a sequentia choice Structure.

Sincethe logit modd will often be referred to in later chapters, we dedt with it early in this
course.
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4 Zones and Networks.

A traffic demand mode appliesto a particular geographica study area. In principle, tripsin
this area can begin and end at any address, and travellers can choose from dl roads, streets
and other trangport options. Because of the sheer volume of data, however, it is not
practicd to gather and andyse data based on individua information. We congtruct a
smplified mode of redity by introducing the following eements:

Zones; the areato be sudied is divided into a number of zones. We study the trips
from and to these zones. We assumethat dl trips begin and end at an imaginary point
indde this zone, which is called the centroid of that zone.

Networks, the transport system consists of a number of networks, that represent the
avallable transport moddities. The network is an astraction of redity. The detaled
leve of representation depends on the problem to be solved.

Since the design of an outline of the study area into zones and networks strongly depends on
the problem to be solved, it is not possible to hold to stringent rules. The intention behind
this chapter isto give some generd guidelines that may be helpful in the outline design.

4.1 Areazoning

We diginguish the study area and a surrounding area of influence. Both areas are divided
into zones, caled respectively the internd and the externa zones. In the study areawe
investigete the traffic flows from and to each zone. Asfor the area of influence we only
examine traffic flows that start or end inside the study area. When traffic moves between
two external zones, we only look at the traffic that crosses the study area.

Important parameters are the number of zonesto be used and their Sze. Each zone hasa
fictitious point, usualy Stuated in the point of gravity of the area, from which dl trips from
and to the zone are supposed to depart and arrive. This point, called the centroid islinked
to the network by connectors. Trips between two zones, the interzonal traffic, occur on
the network. Traffic that does not leave the zone, the intrazonal traffic, has its departure-
and arrival point in the same centroid and is not analysed.

This means that zones must not betoo large. If they are too large, a Sizeable part of the
traffic does not gppear on the network and will, therefore, fall outside the analysis. Nor can
zones betoo smal. Small zones require numerous input data. This increases the cogts of
the study, hampers interpretation of the results and increases the chance of mistakes.

For urban and provincia studies practice has shown that zones with a population of 1000 to
2000 people work reasonably well. Nevertheless, it is possible to deviate from this vaue,
depending on available funds, the scale or the god of the sudy.
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Figure4-1 Zoningin themode for Flemish Brabant.

The following vaues can be taken as guiddines for the number of zones. Large urban or
regiona sudiestypicaly have 300 to 500 zones. The provincid traffic demand modd for
Hemish Brabant (see Figure 4-1) comprises about 1000 zones. This may be considered to
be alarge number. Fifty to 100 zones are enough for smdl-scale sudies.

In terms of traffic production, zones need to be about of equa size. One needsto am,
moreover, for homogeneity in the determining factors of traffic production and attraction.
Snce land-use largely determines traffic production and attraction, it is advisable to divide
the zonesin such away as to achieve optima homogenous land-use insgde a zone.

The zone borders should coincide with the borders of adminigrative units. Examplesare
digricts used by Nationd Ingtitutes for Statistics, voting digtricts, municipdities, counties or
provinces. Using such administrative units eases access to socio-economic data. Zone
borders should, preferably, also coincide with natura barriers such asrivers, cands,
rallways, etc. Sincethere are only alimited number of places where these naturd barriers
can be crossed, the comparison of modd results with field counts is smplified. The shape of
the zones should be as compact as possible, because this limits the number of mistakesin
the calculation of distances.

When dividing the area of influenceinto zonesit is usud to increase the Sze of the zonesasa
function of the distance to the study area. Since most tripswill travel over ardatively short
distance, the number of relevant trips between the area of influence and the sudy area will
rapidly decrease as the distance increases.

Only one zone-divison usudly sufficesfor dl sagesin the traditiond traffic modd. When
avalable time and funds dlow, one may deviate from this procedure. 1t has been shown, for
example, that an adequate moddling of public transport benefits from amore detailed study
area. The provincid modd of Antwerp, for example, shows nearly every public transport
gop, especidly in the town itself. In such cases, an hierarchicd divison into zones and sub-
zoneswould be applicable.
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4.2 Networks

The trangport system is represented by a network comprising of nodes and links that
connect the nodes (see Figure 4-2). The network mode isasmplified reproduction of the
red network. The network is used to calculate the travel times between points of origin and
points of destination. The caculated results of the traffic modd can, additiondly, be
reproduced on anetwork graph.

When dedling with modalities such as car, bicycle and walking, the modd networks are
immediate derivatives of the physica network. The links of the network represent the
roads. The nodes of the network are the intersections. Nodesin the model network are
als0 used to mark changes in road types and the Sites, for example, of bridges and other
specific infra-sructura facilities.

Attributes that characterise the network are assigned to the links. Examples of link-
characteristics are length, speed, travel time, capacity, etc. No characteristics are assgned
to the nodes of the modd network. Specific characteristics of intersections, such aslong
waiting times for some exits or the prohibition to use certain turns, can be modelled by
adding extra (dummy) links.

In contrast to aroad network, a public transport network represents the physica
infrastructure, as well as lines that represent the services carried out on that network. Ina
mode network these lines are defined as a series of consecutive links to which variables
such as frequency, capacity and travel times are assigned. Stops, feeder networks to and
from stations and bus stops, and points of transfer must aso be defined. (see Figure 4-3)
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Figure4-3 Public transport network.

These daysit isusua to draw up separate networks for the different trangport modalities.
This means that one implicitly assumes atrip to be completed via one trangport mode.
There is atendency, however, to switch to the gpplication of so caled multi-modal
network models. Here, the networks for the different transport modes are linked via
transfer links This means, for example, that atrip congsting of acar journey to the station
followed by atrain journey, can be adequately modelled.

Aswe noted in the discussion of the area division, each zone has a centroid. Centroids are
points where the traffic of the zone in question enters or leaves the network. Each centroid
islinked to the rest of the network by one or more connectors. The connectors are a
schematic representation of the loca street pattern insgde azone. Only the traffic that
originates from the zone in question can use it. Ongoing traffic between two other zonesis
not consdered to use the connectors of an intervening zone. It isimportant to link the
connectorsto the network in such away asto imitate the real Stuation as close as possible.

A modd network isadirected network. This meansthat every link hasadirection
assgned toit. A road with two-way traffic, therefore, is represented by two links. Even
when some computer models show only one link on the screen, the road is presented by
two network linksinterndly.

It is usudly unnecessary to reproduce the smallest detail in the modd of the physicad
network. Large networks require many input data and are, therefore, expensve. The
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probability of errors, moreover, increases. Computing optimal routes takes alot of
computer time for large networks. Computing time increases with the number of nodes
raised to a power between 2 and 3.

R OR\LA— “
%’13;«!‘71\;'4@»%‘-‘&" "rfé‘lw‘-‘q'ﬂ
AT S " \/ »\94
‘v > 745 ”’Vﬁ";\'&"% ‘ "‘ -
L P Esse - ~

Figure4-4 Road network in the modd for Flemish Brabant

Roads in anetwork are usually classified according to their function. One didtinguishes, for
example, motorways, main roads, secondary roads, locd roads and urban streets. It is
advisable to aso represent those links in the modd that lie one level below the leve of
interest. If one wantsto study the motor way network, for example, then one should aso
incorporate the main roads in the network mode!.

The following values can serve as a guideline for the Size of the network. A typica network
for an urban or region holdsin the order of 1000 to 5000 nodes. The car network for the

province of Flemish Brabant (Figure 4-4) has about 10000 nodes, and can thus be seen as
alarge network. For gpproximate studies networks of several hundred nodes are sufficient.
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5 Production and attraction

The god of the production/attraction phasein the classicd traffic demand model isto predict
the total number of produced respectively atracted trips for each zonein the study area.
The prediction is based on the socio-economic data of azone. In this phase, two related
models are used.

Production model. Thismode calculates the total number of trips produced per zone,
irrespective of the zone of destination.

Attraction model. This modd caculates the total number of trips attracted to a zone,
irrespective of the zone of origin.

The best results in the design of good production and attraction models are achieved when a
breakdown is made according to trip purpose and other characteristics. We will begin this
chapter with a short explanation of some commonly used terms. Next we will look at the
classfication of trips. Thiswill be followed by adiscussion of the factors thet influence the
production and attraction of trips. We will then look at the most widdly used methods to
caculate production and attraction, namely regression-andyss and category andysis. The
logit modd dso lends itsdlf very well to the determination of production and attraction, but it
is not used much yet for this purpose in practice. Wewill give an exampleto illudrate the
use of the logit modd for the calculation of production. The chapter will end with some
general remarks about the stability of the caculated production and attraction parameters,
and on how to balance production and attraction.

5.1 Terminology

A trip occurs when someone moves from a place where he has undertaken a specific
activity to another place where he will undertake anew activity. The sarting point of the trip
iscalled the origin and the finishing point the destination. A trip can be made usng one
mode of trangport or a sequence of trangport modes. In this context, walking is dso taken
asamode of trangport. We call the movement of a person between two successive points,
using one mode of transport, ajourney. Thus, atrip can consist of severd journeys. A
trip that originatesin O and has destination D, for example, can consst of abicycle journey
from H to point 1, atrain journey from point 1 to point 2, and awalking journey from point
2toB.

Tripsthat begin or end at home are called home-based trips. All other trips are non-home-
based trips.

A trip chain consgts of anumber of trips of which thefirg beginsin on€ s own home, while
the last returns there. One could, for example, make a trip from home to work in the
morning and areturn trip from work back to the homein the evening. Together, they are
cdled atrip chain. Inthefirg trip, the resdence was the point of origin and the workplace
the point of detination. 1n the second trip, the reverse happened. Trips are undertaken for
specific purposes, for example, to get to work or to go shopping. Thisis called the purpose
of thetrip.



The terms origins and destinations (or departures and arrivals) do not aways have the
same meaning as the terms production and attraction. In generd, the zone of origin
produces trips and the zone of arrivd atracts them. Thereis one exception to thisrule: in
home-based trips, the zone in which the homeislocated is aways considered to have
produced the trips. This means, for example, that in the case of home-based work trips,
even though traffic in the evening peak period travels back to the home zone, the home zone
is gill consdered to have produced the trip.

5.2 Trip classification

5.2.1 Classification according to trip purpose

It has been found that production and attraction models yield better resultsif the trips are
classified according to trip purpose and if separate models are then made for the different
purpose categories.

For most purposes, the home is the origin or destination of atrip. Primary in these home-
based trips are the trips to work, but other purposes may aso play an important role, such
as education, shopping and socia or recregtiond activities. Tripsthat do not dart a the
home and that do not end there (non-home-based trips) generaly represent asmal part of
the tota number of trips and are, therefore, usualy not further classified according to
purpose. Thus we get the following breskdown:

Purpose Abbreviatiom
Home-based work HBW (home-based work)
education HBO (home-based other)
shopping
socia / recreational
other
Non home-based NHB (non home-based)

5.2.2 Classification according to the departure time of the trip

Trips are divided into those that occur during peak periods (morning or evening) and those
that occur outside of the peak period. The contributions of the different trip purposes
strongly depend on the time of day during which the trips are undertaken.

The trips that are undertaken with the purpose of work or education, usually occur during
peak periods and are caled mandatory trips. Tripsthat are undertaken for shopping
purposes, socia/recreationa purposes and other purposes, are less obligatory and are,
therefore, called optional trips. This means that one can decide not to make the trip at all.
Even if one does decide to make the trip, there is more freedom in the choice of departure
time.




5.2.3 Classification according to personal characteristics.

Because trip behaviour is strongly influenced by socio-economic factors, a classfication into
these factors can often be useful. The following characterigtics are sometimes used for this
classfication:

Levd of income
Car ownership
Sze and gtructure of the household

The most common classification isthe one into car ownership (aclassification, for example,
into 0,1 or more cars per household).

5.2.4 Classification according to transport mode
Thefollowing categories can be used in a classification of trangport modes used for trips:

Waking

Bicyde

Car (when necessary divided into: driver and passenger)
Public transport

It used to be quite common to develop separate production and attraction models for the
various modes of trangport. Thisisrarely done nowadays. Today, the assgnment of trips
to different modes of transport is carried out in alater stage of the calculation. We return to
this point in the chapter on transport mode choice.

5.3 Factors that influence production and attraction

5.3.1 Factors that influence production

The fallowing factors influence the production of a zone;

Households characteristics

-Income

-Household structure (number going to work, number going to schooal, age ...)
-Car ownership

Zone characteristics

-Land use

-Land price

-Resdentia density, rate of urbanisation
Accessibility

-Extent of trangport options from the zone.
-Quality of trangport options from the zone

Zone characteristics and household characterigtics have been frequently used in studies. The
characterigtic * accessbility’, on the other hand, is hardly ever used, neither in production nor
in dtraction models. Ignoring the influence variable of accessbility in the modds means that



the production and attraction of a zone are insengtive to changes in the transport system.
Thisisadggnificant shortcoming in current models.

In addition to what has aready been said about this subject in chapter 1.4, wefind that a
change in the transport system usualy resultsin four effects on the pattern of  trip-meaking:

Generative effect: anin- or decrease in the tota number of person-kilometres,
Distributive effect: a different distribution of the origins over the destinations;
Temporal effect: ashift in thetiming of thetrips,

Substitution effect: a shift to another mode of transport.

These effects can occur in combination. This Sgnificantly complicates an andysis of the
phenomenon.

By not including the factor of accessibility, the generative effect of achange in infrastructure
is not reflected in the production and attraction models. The distributive effect and the
subdtitution effect can be determined using the digtribution models which will be discussed in
chapters 6 and 7. The tempord effect could be accounted for by usng aso-cdled
departure-time modd. Although such modes have been developed, they arelittle used in
practice.

Itislikely that a changein infrastructure will have little generative effect on the mandatory
trips to work and schoal, at least in the short term. A generative effect will, most likely,
occur for optiond trips.

The tempord effect of achange in the trangport system is possibly more important than has
previoudy been assumed. Congestion problemswill cause many travellersto leave earlier
or later. Thisphenomenon iscaled “pesk spreading”. If improvements in the infrastructure
lead to areduction of congestion problems, many people will, fairly quickly, revert to the
origind peak period, causing renewed congestion during the peak period, thus defeeting the
intended effect of the improvements.

Since accessihility definitdy is an important factor in determining the production and
attraction of zones, there has been an effort to develop models that incorporate the
generative and tempord effects caused by a change in accessibility. A number of models
have been suggested, but, to date, there has been little agreement regarding the accuracy of
these moddls. Thisis due to the difficulty in quantifying the concept of accesshility. For this
reason, thistype of model is rarely used in practice and we will not discuss it further in this
course.

5.3.2 Factors that influence attraction
The following factors influence the aitraction rate of zones:

Number of employees

Land-use

-Indugtrid (type of industry, occupied area)

-Educationd facilities

-Shops (floor area, sales)

-Service sector (hospitas, banks, government ingtitutions, conference centres ...)
-Recregationa (gport centres, tourist- or amenity Stes, theetres ...)
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-Storage and transfer (harbours, airports ...)
Accessibility

-Extent of trangport optionsto the zone
-Quadlity of transport options to the zone

The zones that atract trips are usudly the areas of employment. Thisis primary so because
these areas offer employment, but also because these areas attract supply and other
services.

Aswith trip production, accessibility most likely plays an important role.

5.3.3 Factors that influence production/attraction in goods transport

In the previous section we have listed the factors that influence the production and attraction
in persond transport. However, goods transport also plays an important role in traffic- and
trangport policy. Goods traffic counts for alarge part of dl road-traffic. About 15% of dl
vehicles on the primary road network are goods vehicles. This percentage varies between
2% and 20% on urban networks. The following factors influence the generation and
atraction of goods transport.

Number of employees in acompany
Company turnover

Bullt-up area

Sizeof anindudtrid complex

Type of company
Accesshility of acompany

5.4 Regression analysis

Regresson andysis is the most frequently used method to caculate productions and
attractions.

In alinear regresson modd wetry to predict avariable Y as alinear function of one or more
influence varidbles X;

Y:a+le1+b2X2+b3X3+---

The variable Y to be predicted is cdled the dependent variable. The influence variables X;
are the independent variables. The coefficient a is the congtant factor of the regression
equation, the coefficients b are the regression coefficients. When there is only one variable
X, one speeks of smple regresson. When there are severd variables Xy, X; ... , weuse
the term multiple regression.

When regression analysisis used for the development of production and attraction models,
the X; represent the socio-economic influence factors mentioned above, for example
income, car-ownership, etc. The dependent variable Y represents the number of trips
produced or attracted, usually subdivided according to purpose. Most production and
attraction models predict the number of trips for a pesk period.
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The congtant factor and the regression coefficients are estimated (cdlibrated) using socio-
economic data gathered over abase year. The calibration uses the method of least squares
for which computer programmes are widely available. It isassumed that these coefficients
aretime-invariant, so that the trips for a forecast year can be determined using the estimated
regression equation and expected socio-economic developments.

5.4.1 Production

The development of regression models for production can be based on (aggregeate) data per
zone or on (disaggregate) data per household.

5.4.1.1 Production based on zonal data

With these models one tries to predict al trips produced by a zone, usng socio-economic
datathat are characterigtic for the entire zone. This method should only be used when one
has to rely on aggregate zond data. When more detailed data are available a the
household- or at the persond levd, it is clear thet aggregation to zond means or totas
looses alot of information. The method will only yield relidble results if zones arefairly
homogenous in their socio-economic structure. I thisisto be achieved, the zones would,
generdly, haveto be smdl. This, in turn, increases the costs and complexity of the moddsin
regard to data gathering and cdibration.

It should be noted that regresson models at the zona level can use zond totas, such as
trips-totals per zone and cars-totas per zone. But zonal means, such as number of trips per
household per zone and number of cars per household per zone, can dso beused. The
difference between the two methods is smdl, dthough the use of zone meansis preferred,
gnce thisfilters the influence of the zone sSize out of the equation (in so far as this does not
appear in the other variables).

5.4.1.2 Production based on household data

We saw in the previous paragraph that a model based on data per household is preferable
to amode based on zond data. This renders the modd independent of the chosen zond
break-down (both in terms of the Size of the zones and their socio-economic composition).
One d 0 avoids the loss of information that comes with the aggregation of datato the zond
leve.

In generd, the household is taken as the unit, not the individual. Thisis so dueto the
assumption that the characteristics of a household (car ownership, for example, or income
and composition) determine production, rather than the persond characteristics of an
individud.

5.4.2 Attraction

Aswe have seen, demographic factors play avitd role when determining production. Inthe
case of attraction, conversaly, the determining factors are employment in the zone and land-
use.



The mogt important variable for home-based work traffic is, naturdly, employment in the
atraction zone. Asarough gpproximetion, every place of employment yields one home-
based work trip.  Information regarding employment is usudly available. When thisis not
the case, one can estimate employment levels on the basis of land-use. A Stuation Smilar to
that of home-based work trips exists for educationd trips.

Edtimating the attractions for the other trip purposes is often based on land-use in the
atraction zone. The surface area occupied by shops, companies and indtitutions could
express this land-use factor, or another relevant criterion that indicates the importance of the
attractor.

When we discussed the regression methods to estimate production, we saw that caibration
can be done a the zond leve or on the basis of households. However, when regression
andysisis used to cdculate the attractions, one usualy uses aggregeate data at the zond levd.

Lastly, it should be noted that regression equations for normal zones are not used to
cdculate attraction for gpecid attraction zones of great importance (airports for example).
These specid zones require separate moddls, research or counts.

5.4.3 Problems in the application of regression analysis

In this paragraph we present some problems that can occur when applying regresson
andysis for the development of production and attraction models. It isnot our intention to
give an exhaudtive lig; regresson andyssisawiddy used Satidticd technique with an
extengve literature, to which we refer for more detailed information.

5.4.3.1 Multi-colinearity

This phenomenon occurs when one or more of the independent variables dso show a mutual
correlaion. Obvioudy one should try to choose the independent variablesin such away as
to keegp them maximaly independent of each other, though this may be difficult in practice.

5.4.3.2 How many and which independent variables?

In generd one will try to keep the models as smple as possible, in other words not to use
more independent variables than is rictly necessary. Questions that play arolein the
decison whether or not to incorporate an independent varigble in amultiple regresson are
the following:

Are there strong theoretical reasons to introduce a specific variable?

Istheincluson of certain variables useful in the calculation of particular policy decisons?
Does the variable to be introduced contribute sufficiently to the explanation of the
production or attraction to be estimated? A techniqueto test thisis a so-called step-
wise regression in which the variables are introduced in steps according to their
contribution to the explanation of the independent variable.

Is the future development of the socio-economic variable to be introduced itsdlf easy to
predict? If not, it isof little usein the prediction of future productions and attractions.



49

5.4.3.3 Non-linearities

The regression mode assumes a linear relation between trips and socio-economic variables.
In redity, however, thisrdation may not be linear. It is sometimes, though not dways,
possible to circumvent this difficulty with a number of different techniques. These techniques
comprise atransformation of variables (for example taking the logarithms of the variable) or
the use of so-cdled dummy variables. We will not eaborate this point.

5.4.3.4 Constant factor in the regression equation

In order to guarantee that partial results can be added, it is, in the case of regresson on the
bass of zond data, necessary for the regresson line to pass through the origin. In other
words, the constant factor in the regression equation should be equd to zero. If this does
not happen the specification of the regresson modd may be erroneous.

Example:
Assume that one finds the following regression equation for the number of departuresin azone:
Departures = 1080 + Population

For azone of 2000 residents, therefore, the number of departuresis 3080. If the zoneissplit into
two smaller zones, each with 1000 inhabitants, there are 2080 departures per smaller zone and 4160
departures for the entire zone. This contradicts the result of 3080 departures found in the first
instance.

5.4.3.5 Extrapolation

Strictly speaking, regression equations gpply only to the range of data that were used for the
cdibratiion. When one applies regression equations for forecasting purposes, results that fal
outsde thisrange can be achieved. Some caution is, therefore, justified when using data
that have been caculated in thisway.

5.4.3.6 Ecological correlation

When using aggregated data a problem can occur that is known under the name of
“ecologicd corrdation”. If the data comes from severd sub-populations, we may find a
certain (postive, for example) correlation inside the sub-population, while, if we started from
the means of the sub-population, we would get atotdly different (negative, for example)
correlation.
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Figure5-1 Ecological corrédation.?

Anexample of thisisshown in Figure 5-1. The disaggregated data insde the zone show a
positive influence of income on production. 1f we had used means per zone we would have
reached a completdly different conclusion.

5.5 Category analysis

In acategory analyss the population of the sudy areais divided into anumber of
homogenous groups or categories, based on specific socio-economic characteristics. The
trip behaviour is determined for each of the categories, with the understanding that this will
remain stable over time. 1f one knows the future composition of a zone in terms of
categories of inhabitants, one can caculated future trip behaviour. When compared to
regresson anayss, this method has some advantages, but aso disadvantages.

5.5.1 Production

The principle of category andydsfor the calculation of production can best beillustrated by
an example.

Example:

Many research projects have shown that the trip production of a household depends primarily on
car-ownership, family size and composition, and the income of the household. Inthe examplewe
assume aclassification into three different categories of car-ownership and 4 categories of
household size. Having made an inventory of the data, a category analysis could give the results
shown in Table 5-1, in which the number of trips per household is given per household category.



51

Table5-1 Resultsof a category analysis?

Car-ownership of household

Persons in 0 1 2+
household
1 012 094
20f3 0.60 138 216
4 114 174 2.60
5 1.02 1.69 2.60

If acategory andyss-table has been made using data for the base year, the next sepisto
esimate the number of households in each category in aforecast year. Thetota future
production is then found by multiplying those numbers by the trip rates in the category
andysistable.

5.5.2 Attraction

Category andysisisrardy used to caculate atraction. It would, in principle, be possible,
using, for example, a classfication in sectors of employment and employment dengties.
However, the problems associated with the gathering of sufficient disaggregated data are
huge.

5.5.3 Problems in the application of category analysis

Although category analysis has some advantages such as the conceptuad smplicity of the
method and the fact that nonlinearities are easily accommodated for, when compared to
regresson andyss, it do hasits disadvantages.

5.5.3.1 Many calibration data required

The most important disadvantage is the need for large numbers of data. The example above
ismideading in terms of the number of categoriesto be distinguished. In practice one will
quickly distinguish three categories of car-ownership, Six for incomes and six for household
sze and compostion. This gives 3x6x6 = 108 categories.

Assuming that aminimum of 50 observations per category are required to ensure fairly
reliable satigtical means, aminimum of about 5000 observations would be needed. In
redlity, this number will be much higher becauise the observations will not be equally divided
over the categories. In short, asmall increase in the number of categories leadsto ahuge
increase in the data required.

5.5.3.2 Which categories now and in the future?

Choosing suitable homogenous categories is a difficult task, athough so-cdled clustering
methods are available for this purpose. Another important problem is calculating the future
break-down of householdsin a zone over the various categories. Thereare no realy
satisfactory solutions to this problem.
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5.6 Use of logit model for calculation of production.

The totd number of trips made in an areais the consequence of alarge number of individua
choices. If we confine the choice set for individuals to the two options whether to make a
trip or not, we can use abinary logit modd. We shdl illugrate this with the following
example that was taken from the TransCad manual.*

Example

Household characteristics, zone characteristics and the accessibility of the zone determine the
production of azone. These last two characteristics are constant for one specific zone. The
production for this specific zoneis, therefore, afunction of household characteristicsonly. As
noted before, the household is usually taken as a unit, but in this example, we will take the
individual as aunit.

We now want to calcul ate the probability that someone chooses to make a home-based work trip as
afunction of hisor her personal characteristics.

Thefollowing personal characteristics are used:

A =Age (in years 16-90)

ED = Education (scale from 1-17)

G = Gender (0 =woman; 1 = man)
MM = Married man (0=no; 1=yes)
W = Married woman (0=no; 1=yes)

cw = Woman with child under 6. (0=no; 1=yes)

Thelast four variables are so-called dummy -variables. These are variables, which can only assume
thevalues0 or 1. Each dummy -variable divides the population into two sub-groups. By using a
number of dummy -variables, we can distinguish anumber of sub-groups.

Each individual hastwo choice alternatives. This enables usto use the binary logit model.
Choosing aternative 1 means that atripis made, alternative 2 represents the fact that no trip is
undertaken.

The probability that a home-based work trip will be made can be formulated using the following
binary logit model (see chapter 3.3)

1

D= Trewmw

Using adata-file, where each line notes the values of the personal characteristics for aperson, and
whether or not that person made a home-based work trip, we can estimate the functions for the
observable utilitiesV; and V, Assume that we get the following results:

V, =-0.47- 0.05* A+0.21* E +0.27* G +1.59* MM + 0.31* MW - 1.74* CW
V,=0

Since the socio-economic variables for one individual will not vary across the two alternatives they
need to be specified as alternative-specific variables (see chapter 3.2). It does not matter in which
utility function we include the alternative-specific variable. If we had, for example, included Gin the
function V, instead of V3, we would have achieved the same coefficient 0.27, although prefixed by a
minus sign. The end-result of the cal culation remains the same because the binary logit-model uses
differencesin utilities.

We must ensure that all coefficients have signs that agree with our intuitive expectations. For
example, the minus sign for the variable CWindicates that a woman with ayoung child islesslikely
to make a home-based work trip. Thisis so because the observable utility for the execution of atrip
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becomes smaller when CWhas avalue of 1. The valuesfor the coefficients also enable usto
calculate the effect of a change in one of the variables. Assume that the probability of an home-
based work trip for someone with an education level of E = 10 equals 50%. Check that that this
probability risesto 70% if the level of education risesto E = 14 and if the other variables do not
change.

The logit mode discussed above computes the probability that a specific individud will
make atrip. However, we want to know the total number of trips madein an area. We will
therefore till have to aggregate the individua probabilities, to arrive a aforecast for the
entirearea. See the remarks concerning this problem in chapter 3.4.

5.7 Stability of production and attraction parameters.

Production and attraction modds are devel oped to determine the generation of tripsin a
forecast year. The cadlibrated parameters, however, are usually based on data from a base
year. How can we be certain that these parameters are invariant in time so that they will
aso gpply to future Stuations?

Research shows that trip behaviour remains fairly stable when the time horizon is not too far
away. Thisrequires however, that externa socid influences do not change too dragticdly. A
congderable increase in fud pricesis an example of thiskind of externa impact.

Other socid tendencies, such as gradud lifestyle changesin society at large, or an ageing
population will influence trip behaviour in ways that cannot be reflected in the classicd
production and attraction models.

So-cdled long-term longitudinal impactsthat are of great strategic importance, require a
different type of modd which are undergoing widespread development a the moment. This
type of mode will be discussed in another course.

5.8 Balancing production and attraction

If we take a sufficiently long period of time, the total number of departures calculated over
al zones, should equa the total number of arrivalsin dl zones. Separate models are used,
however, to caculate productions and attractions. The total number of productions and
attractions calculated with these modd s will, in most cases, differ dightly. Matching the
results, in order that the totals are equd, is called balancing productions and attractions.

It isusualy assumed that the caculated productions are more reliable than the cal cul ated
atractions. Thisisdueto the fact that housing is easier to predict than employment. The
total calculated production is, therefore, accepted as the correct vaue for the total number
of trips T. If D; represents the attraction for zone j and J the total number of attraction
zones, a proportiondity factor f is determined:

J
f=T/4 D,

=1

All cdculated attractions are now multiplied by the factor f.
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Rather than ba ancing the productions and attractions of the entire OD-table at once, it can
be done in stages. To do this, the areaiis divided into regions and the productions and
atractions are balanced per region.
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6 Distribution

Using the production and attraction models discussed in chapter 5 we determined the
departures and arrivas for the various zones. However, we still do not know the destination
of the trips that depart from a particular zone, nor do we know where the trips that are
attracted by a particular zone originated.

The am of adigtribution modd can now be described as follows;
Digribute:

the trips that originate in a particular zone over al dedtinations
the trips with a destination in a particular zone over dl origins

The complete pattern of tripsin the area of study can be represented in a so-cdled origin-
degtination table or OD-table. Theam of adidribution modd, therefore, isto determine the
OD-table for a particular forecast year.

We begin this chapter with adiscusson of the OD-table and the notation used. Next we
give avery compact description of the basic problem of the distribution cadculation and the
principle of the methods we can use for its solution.

We will then discuss two methods used for the distribution caculation:

In the first method we use the trip-data from an existing OD-table for a base-year as a
guidelinein order to distribute the future productions and attractions (determined in the
production and attraction model) over the new OD-table for the forecast year.
Because the old trip data will, in fact, be raised with a growth factor, thismodd is caled
the growth factor model.

The second method does not use the existing trips between zones, but the level of
travel-resistiance or impedance between zones as the measure by which to distribute
trips over the cdlls of an OD-table. Since the resulting formulas somewhat resemble
Newton’s law of gravitation, the name gravity model is often used. Alternative names
for the same modd are interaction model and entropy model. The term interaction
mode needs no further explanation. The term entropy mode came into use when the
plaushility of the gravity modd was demonstrated with help of the concept of entropy,
known from physics and information theory. Later on in the chapter we will show that
the gravity model can aso be seen as a variation on the growth factor modd.

Since the influence of resstance againg travel is used in the gravity model, the concept of
travel-impedance and the associated concept of a deterrence function will precede the
discussion of the gravity mode itsdlf. Data from an existing OD-table (also called the base
year matrix) is used to determine the influence of travel impedance. The objectiveisto
determine the shape of the so-called deterrence function for the base year. It is assumed
that this deterrence function retains its relevance for the forecast year. Determining the
shape of the deterrence function is aso called caibrating the gravity modd. Werase afew
points regarding thiskind of cdibration in this chapter. A more detailed discussion will be
given in afollow-up course.
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The chapter ends with a short discussion of a number of gpplication aspects particular to
distribution moddls.

Lastly, we will confine ourselves in this chapter to so-caled unimoda (sngle-transport
mode) distribution modds. The digtribution of trips over severd trangport modes (the moda
gplit) will be discussed in chepter 7.

6.1 Notation

The pattern of tripsin an areais usudly givenin a number of so-cdled origin-destination
tables or OD-tables. Separate OD-tables tend to be used according to purpose (work,
education for example), personal characteristics (whether a car is available or not, for
example) and the modes of transport used (car and public transport, for example).

Table6-1 General form of an OD-table

Arrivals
Departures 1 2 j n ar,
J
1 Tll T12 Tln Ol
2 T21 T22 T2n OZ
i Tjj @)
ar ) D; D, Dn at =T
i [

An OD-table isatwo-dimensond matrix congging of m rows and n columns. The rows
represent the zones of origin and the columns the destination zones. In most casesa
particular zone is both azone of origin and a destination zone. This meansthat we usudly
have a square matrix, i.e. m=n. Thecdlsof row i contain the trips that depart from zone
with the zone of the corresponding column j as destination. The cdlls on the diagond from
top left to bottom right show the intra- zond trips, the trips that start and end in the same
zone. The other cdlls represent the inter-zond trips, i.e. origin and destination are in different
zones. The number of tripsfrom i to ] (per time unit) isindicated by Tj;.

Thesum of Tj; over dl columnsin row i represents the total number of trips leaving zonei,
whichisindicated by O.. Thesumof T;; over dl rowsin column j represents the total
number of tripsarriving in zonej and thisisindicated by D;. The sum of al tripsin the entire
tableisindicated by T. Thetotd sum over the entire range of an index is described by
placing the appropriate index below the summation sgn. Thus we can have the following,
for example:

aT,=0 ad QT,=D,
i i
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In the digtribution problem the Tj; are the unknowns. The aim of adistribution modd is
precisely to determine these Tj;. The departures O, and arrivals D; act as (boundary)
congtraints. We get these departures and arrivas, for example, from an gpplication of a
production- or attraction modd. Depending on the Stuation, we speak of adoubly or sngly
congrained distribution modd.

doubly constrained model: both departures and arrivals are known
singly constrained model: ether the departures, or the arrivals are known

6.2 Basic problem of the distribution calculation

For adoubly congtrained distribution problem, i.e. the determination of an OD-table where
the sums of the rows (the origins) and the sums of the columns (the degtinations) are known,
the fallowing gpplies:

éT-:O- voori=1...m
j

ij i

gl'l'i,:Dj voorj=1...n

Thisaddsup to: m + n - 1 independent equations.

(If we have st up m equations for the rows and n-1 equations for the columns, then the
condition for the last (unused) column provides no additiond informeation. Thisiswhy there

arem + n -1 independent equations.)

Thevaluesto bedetermined are T fori =1 ... mandj =1 ... n. Thustherearem*n
unknowns.

In a 10x10 table, for example, we only have 19 independent equations with which to
determine the 100 cells of the matrix. Thus, there are far more unknowns than equations,
the sysem is undetermined. Thereis an infinite number of solutions that satisfy the given
boundary constraints.

Which of these possible solutions is the correct one, or how will the trips from a particular
origin distribute themselves over the detinations?

It seems obvious to assume that the smdler the distance between an origin and a destination,
the grester the volume of traffic attracted by the origin-destination pair. In traffic
engineering, we do not tend to speak of distances between an origin and a destination but of
the more genera concept of travel impedance.

We have seen above, that the boundary congraints alone are not sufficient to caculate the
OD-table. We need additional conditions. These additiona conditions consst of
information concerning the impedance between al origins and destinations. How do we get
information about the travel impedance between the origins and destinations? In principle,
there are two methods:

The first method uses the didtribution of the tripsin an existing matrix. Thisisaknown
OD-table for a pecific base year that serves as the sarting point for the caculation of
future digributions. After al, the existing digtribution of traffic over the OD relationsis
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the result of the digtribution of travel impedances between the OD pairs. A modd
based on this premiseis cdled a growth factor moddl.

In the second method we explicitly determine the travel impedance between each OD
pair. Datafrom the base year matrix isthen used to determine the influence of
impedance on the digribution of trips. The information thus gathered is then used to
cdculate the future digtribution. This type of method is cdled a synthetic method. The
best-known synthetic method is the gravity modd.

6.3 Growth factor models

Assume that we have access to a base year matrix, possibly from a previous study or
otherwise calibrated on the basis of recent data. The am isto determine an OD-table for a
forecast year, say 10 years from now.

Suppose that we aso have at our disposa a growth factor for the traffic to be expected
over the coming 10 years. That growth factor can be based, for example, on expected
economic growth. The expected growth could apply to the entire study area, or we can
have information regarding expected growth in production and aitraction for the various
zonesin the sudy area. Dependent on the available information we can distinguish a number
of growth factor methods.

6.3.1 Uniform growth factor

If the information applies to a growth factor for the entire sudy area, we multiply each cell
from the basic matrix by the growth factor. Thisisthe most primitive Stuation, only suited to
aplanning term of & most oneto two years. The method is aso used when time or financid
means are inadequate to carry out further research. In most cases we will have accessto
growth factors that have been differentiated for each zone and that come, for example, from
a previous production/attraction calculation.

6.3.2 Singly constrained growth factor model

Assume that we have information about the expected increase in trips for each origin zone.
In this casg, it is possible to gpply the zone- specific growth factor to each row in the matrix.
See Table 6-2 for an example. An increase from 255 to 400 is predicted for zone 3. We
now multiply al tripsin row 3 by agrowth factor of g; = 400/255. The same appliesto the
other rows.
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1 2 3 4 a predicted
’ o
1 5 50 100 200 355 400
2 50 5 100 300 455 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702
& 205 355 455 620 1635 1962
1 2 3 4 a predicted
‘ O
1 5.6 56.3 112.7 225.4 400 400
2 50.5 5.1 101.1 303.3 460 460
3 78.4 156.9 7.8 156.9 400 400
4 123.2 246.3 307.9 24.6 702 702
a 257.7 464.6 529.5 701.2 1962 1962

Table 6-2 Example of production-constrained growth factor

6.3.3 Doubly constrained growth factor model

Thisisamog interesting Situation. The reader is advised to take good notice of the method
used to solve this problem, because the same principle will return in the discussion of the
gravity modd.

We now have more information both about the future number of trips that will be produced
in the zones of origin, and about the number of future trips attracted by the zones of
degtination. Thisleadsto agrowth factor of g; per row of the OD-table and agrowth
factor of Gj per column. Which growth factor should we take for cdl ij? An average
growth factor (g + G;)/2 isnot agood idea. If we apply this kind of average growth factor,
neither the congtraint on the productions (row totas), nor the congtraint on the attractions
(column totals) will be met.

In 1965, Furness suggested the following iterative method to obtain an OD-table for a
forecast year. First match the matrix with the expected future productions by multiplying
each row by a (row specific) growth factor gi. Onewill then find that the column totas do
not agree with the expected atractions. Thisiswhy we now multiply each columnin the
table that we obtained in the previous step by anew (column specific) factor G; to achieve
thisgod. It then becomes obvious that we need to apply new correction factors for the
rows, etc. We now repest this process of baancing until the correction factors for rows and
columns convergeto avaue of 1.0. See Table 6-3 for an example.
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1 2 3 4 a predicted
’ O
1 5 50 100 200 355 400
2 50 5 100 300 455 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702
a 205 355 455 620 1635
predicted
D, 260 400 500 802 1962
1 2 3 4 a predicted
’ O
1 5.2 43.6 97.2 254.0 400.0 | 400
2 447 3.8 83.7 327.9 460.1 | 460
3 76.7 128.7 7.2 187.4 400.0 | 400
4 133.4 223.9 311.9 32.6 701.8 | 702
a 260.0 400.0 500.0 801.9 1961.9
predicted
D, 260 400 500 802 1962

Table 6-3 Example of doubly-constrained growth factor

The dgorithm of Furness can be defined as follows:

Repeat
Badance the productions;
Baance the attractions,
Until convergence

It can be shown that this “ Furness-process’ will, in most cases, convergeto astable
solution.

If we summarise dl successive mulltiplication factors of the Furness-process in the factor a; =
0i1* g2 * ...fortherowsand b, = Gj, * Gj, * ... for the columns, we can write the result of
the iteration as follows:

Ti=abt

Inthis formulaa; and b; are called balancing factors and t;; isthe a priori OD-table or the
base-year matrix.

6.3.4 Disadvantages growth factor models
Growth factor models pose the following problems:
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New spatial developments for the study area cannot be accommodated. Although we

can cdculate the expected production and attraction, we have no suitable start vauesin
the base year matrix.
The method depends heavily on the rdliability of the datain theindividud cdls of the

base year matrix. Erroneous or unreliable datain one or more of the cellsin the base

year matrix can be reinforced through consecutive correction factors. And, when

observations for specific OD-cdlls are not available, their future vaue cannot be
determined.

There are instances when problems can occur with the iteration process. We noted

above that the Furness-process usually convergesto a stable solution. However, when
so-cdled zero-cells occur in the base year matrix, convergenceis not aways
guaranteed. Seethe examplein Table 6-4. Thelower table shows the Stuation after 10
iterations. Convergence does not occur. The problem occurs in the second row of the
matrix. Because of the desired column tota, the only nonzero-cdll is this row can never
exceed 400. It istherefore, impossible for the second row tota to achieve 460.

1 2 3 4 a voorspelde
| 0
1 5 50 100 200 355 400
2 0 50 0 0 50 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702
%l 155 400 355 320 1230
voorspelde
D; 260 400 500 802 1962
1 2 3 4 a voorspelde
| 0
1 34 0.7 61.0 355.3 420.4 400
2 0 388.2 0 0 388.2 460
3 65.5 2.8 59 345.7 419.9 400
4 191.1 8.3 433.1 101.0 7335 702
é:l 260.0 400.0 500.0 802.0 1962.0
voorspelde
D; 260 400 500 802 1962

Table 6-4 Example of a non-conver ging Furness process?

A dgnificant disadvantage of growth factor methods is their inability to incorporate
changesin the trangport system, in this ingtance the trangport network. Their goplication
possbilities are limited, therefore, in research concerning the impact of new
infragtructure, such astheintroduction of dternative transport modes or the introduction
of tariffs (toll collection, for example).
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6.4 Travel impedance and the deterrence function

We have seen that growth factor models have limited gpplicability. Thereisaneed for
distribution models that describe trip behaviour in amore fundamental way. The best
known of these so-cdled synthetic modesis the gravity model. Before we undertake a
factual description of the gravity modd, it is necessary to dedl with the concepts of travel
impedance and the related deterrence function.

6.4.1 Travel impedance

The effort involved, or the res stance againgt undertaking atrip is called travel impedance. It
would seem obvious to express this impedance smply in terms of the travel time or distance
involved. Things are not that Smple as can be explained by an example.

Takethetrip between Tilburg in The Netherlands and Leuven in Belgium. Assume that someone
wantsto travel by car from Tilburg to Leuven. There aretwo fairly good routes:

Tilburg-Breda-Antwerp-Brussels-Leuven. Thisroute entirely follows motorways. Thelengthis
about 135 km. If thereisno serious congestion near Antwerp or Brussels, an average speed of

90 km/hour is attainable. In that case, the trip takes 1.5 hours.
Tilburg-Turnhout-Ged-Aarschot-Leuven. Thisroute followsthe N9. It isabout 100 kmlong. Some
parts of the roads are very good and can be travelled at 70 km/hour. Other parts of the route,
however, travel through the centres of towns and villages, which causes considerable delays. The
average speed achieved over the entire trajectory of this route may be about

50 km/hour. Travel time, therefore, is 2 hours.

Which of the two alternatives for the car-drive Tilburg-L euven offers the least impedance? In other
words, which will be the most attractive to the driver?

Let’'s compare travel-costsfirst. For the sake of simplicity, we only look at the cost of fuel. From
this point of view, the journey viathe N9 is preferable. The distanceis shorter and, dueto the
lower speeds, fuel-use per kilometre isrelatively low.

Next, we compare travel times. In this case, thetrip via Antwerp and Brusselsis obviously
preferable. Travel timeishalf an hour shorter. And thetraveller also attaches a certain value to this
gainintrave time.

Other factors such as safety or scenery contribute to the assessment of travel impedance of aroute.
Assessing such factorsis very subjective. When it comesto safety, thejourney via Antwerp-
Brussels probably wins, but many will prefer the trip through the Mid-Kempen for its natural
beauty.

The example shows that assigning atravel impedanceto atrip isadifficult problem.

Usually the assessment of travel impedance is confined to (monetary) cost and time
elements. Other factors are left out, or, if possible, reduced to cost or time elements.

Monetary cogtsinvolved in acar trip are, for example, parking, petrol and toll costs. Costs
incurred in travel by public transport can include ticket prices and parking the bicycle. In
addition to these so-cdled variable costs, fixed costs such as amortisation costs for acar or
the costs for a season ticket for public trangport can aso be included.

Trave timesfor atrip per car are, naturdly, the driving time, but aso the time spent looking
for aparking place and the times spent walking to and from the car park. Of importancein
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public trangport are the trave times in the vehicle, the travel time getting to and from the
dation, waiting times and transfer times.

The total impedance of atripfrom i toj viarouter for a specific transport mode can be
written as alinear combination of the experienced subjective time duration T;" and monetary
costsKj;". The minimum of this expresson caculated over dl possible routes s the travel
impedance c;; between i and j.

Cj = mri n(Tijr + Ki; /g)

Herethe value of time g is expressed in money-units per time unit (euro/hour, for
example). Thevaue of time gindicatesthat the traveller is prepared to pay g money-units
for asaved time-unit of travel time. In the formula, the monetary costs Kj;" have been
converted to time unitsviathey. The cusomary phraseisto say that the travel impedance
isexpressed in generalised time. The unit used is, for example, minutes. The term “ cogt-
minutes’ is sometimes used to make a clear distinction between “norma” time units and
generdised time units. (The travel impedance can aso be expressed in generalised
(monetary) costs For the sake of interpretation the expresson in time unitsis preferable;
the effort in making ajourney is usualy associated with atime duration.)

Thevaue of g depends on the person (the income of the traveller plays an important role)
and on the purpose of the trip (the gppreciation of the vaue of time in commercid trafficis
noticesbly higher than in other traffic). An accepted average vauefor gisabout 5
euro/hour. Thisvaue can increase three- or fourfold for commercid traffic.

In the travel impedance formula above T;" and Kjj" are subjective travel times and monetary
cods. In public trangport, for example, aminute of waiting time is experienced as a greater
nuisance by the traveller than aminute of effective riding time in the vehide. Something
smilar hgppens with monetary costs. Out-of-pocket costs such as parking fees affect the
traveller more than hidden costs such as petrol costs. To expressthis differencein
perception, the duration timests and costs ks of the various components s which together
make up the journey from i to j viarouter are multiplied by the weighting fectorsa s and b.:

Tijr:é.asxts en Ki;:é-bsxks

There often isinsufficient information to assess the vaue of the weighting factors, whichis
why they are often set equa to 1. In public transport, however, some research has been
caried out into the weighting of travel time components. Thetravel timefor atrip by public
transport is composed of the following components: effective riding time in the vehicle,
travelling time to and from the termind, waiting time and transfer time. The following factors,
for example, have been used in the traffic modds for Hemish Brabant:

component s as

riding timein vehide 1.00
time to and from termind 1.65
waiting time 1.50

Table6-5 Weighting of trave time public transport (FIl. Brabant)



When in public trangport the journey aso requires transfers, then, besides the time spent
waiting and walking, the traveller aso experiences annoyance regarding the bregk in the
journey itsdf. Extratermsin the impedance formula can aso be introduced for this aspect.

From now on we will indicate the travel impedance between two placesi and | by the
generaised travel time ¢;; and assume that al applicable components have been properly
accounted for. If we want to distinguish between a number of trangport modes we will add
theindex m (for moddity). We then usethe notetion ¢;" which indicates the impedance
between i and | for transport mode m.

6.4.2 Deterrence function

Assume that the total number of departures (the trip production) from a zone of originis
known. We want to find out how these trips will distribute themselves over the possble
degtinations. It isintuitively clear (and it appears from empirical research) that the number of
trips to a destination decreases as the distance (or rather the travel impedance) to that
degtination increases. Thistravel impedance effect on the didtribution of tripsis expressed
by the deterrence function F(c;j) . Separate deterrence functions are gpplied depending on
the purpose of the trip, on persona characteristics and, as will become clear in chapter 7, on
the mode of transport.

Over the years, many mathematical forms have been proposed for the deterrence function.
Origindly it was assumed that the number of trips would decrease in proportion to the
square of the distance, inspired, no doubt by Newton'slaw of gravitation. Observations,
however, did not confirm that hypothesis. Later on travel impedance was used insteed of
distance, while other exponents in the negative power function were tried. Further on in this
chapter we will show that, based on theoretica considerations, the shape of the deterrence
function can be gpproximatdly described by a negative exponentia function, &t lesst over a
limited range of the travel impedance. Some functions that have been used are:

F(c))=¢"° negative power function

F(c,)=¢"" negative exponential function

F(c,))=¢c" > b4 combined power- and exponentid function

Parametersa and b in the functions above are determined through cdibration using
observations from the study area. The generd shape of the functions for some vaues of the
parametersisgiven in Figure 6-1.
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G;>°exp(-0.12c;)

N |

l“ ™ exp(-0.0Sci,-)

Gij

Figure6-1 Some analytical deterrence functions.

Although often used, the negative exponentia function has a disadvantage. The same
absolute incresse in travel impedance a low vaues of the travel impedance has the same
relative effect on thetrips as at ahigh travel impedance. This does not confirm to our
intuition. One would expect, for example, that an increasein travel impedance from 5 to 10
minutes would have ardatively larger effect than an increase from 120 to 125 minutes. It
will, therefore, usudly only be possible to fit a negative exponentia function to empirica data
over alimited range of the travel impedance. (See aso example 1 in chapter 3.5.)

Sometimes a deterrence function does not decrease monotonoudly across the entire range of
the travel impedance. Inthe case of car trips, for example, the value of the deterrence
function Sarts a alow leve, reaches amaximum, and only then decreases with increasing
travel impedance. The reason isthat the tendancy to use the car for very short distances will
generdly below. Walking or cycling isthen apreferable choice. In such casesit is
sometimes possible to use a combination of power function and exponentia function to
describe the data.

It isof course not at al necessary to write the deterrence function in a closed mathematica
form. By enumeration (or table lookup) we can dso define afunction. In that case the
function value associated with each argument of the function is specified. In practice thiscan
be done, for example, by storing the deterrence function vaue (sometimes cdled afriction
factor) for anumber of discrete values of the argument in atable (a friction factor table) and
to assume that the function vaue in an interval around a discrete vaue remains congtant. One
can aso apply an interpolation-technique in the interva around the discrete vaue.
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6.5 Gravity model

Having introduced the concepts of travel impedance and deterrence function, we will now
proceed with our examination of distribution models. The gravity mode to be discussed in
this section is strongly related to the growth factor models we studied in a previous section.
In the growth factor models we used an existing a-priori matrix to measure the influence of
the travel impedance on the number of trips to the various destinations. In the gravity model
we use the vaue of the deterrence function as ameasure for the influence of impedance on
the expected number of trips between origins and destinations.

6.5.1 Principle of the gravity model

The best way to explain the gravity modd isby way of an example. Table 6-6 isan OD-
table where the margins show the productions and attractions that have been predicted using
aproduction and attraction model. The problem isto enter trips in the OD-table in order to
mest the congraints.

Boundary condraints

1 2 3 4 predicted

400
460
400
702

S| WODNPE

redicted
260 400 500 802 1962

(O

Table6-6 Boundary constraints gravity model example?

The following table contains the travel impedance c; between al origins and destinations,
expressed for example in minutes of generdized time.

Impedance ¢;; (minutes)
1 2 3 4
1 3 11 18 22
2 12 3 13 19
3 155 13 5 7
4 24 18 8 5

Table6-7 Impedancetable gravity model example?

Assume that, based on data from a base-year matrix, we cdibrated the following deterrence
function.
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- 0.1¢;

F(Clj) =€
For every cdl in the matrix we calculate the vaue of the deterrence function, obtaining a
table of so-cdled friction factors. We now start the balancing process as shown in Table
6-8. Thistable gives the reative proportions between the number of tripsin each cel of the
OD-table that isto be estimated

Starting matrix = Friction factor table F(c;;) = exp (- 0.1 ¢;)

1 2 3 4 a predicted
‘ !
1 0.74 0.33 0.17 0.11 1.35 400
2 0.30 0.74 0.27 0.15 1.49 460
3 0.21 0.27 0.61 0.50 1.59 400
4 0.09 0.17 0.45 0.61 1.32 702
é:\ 1.34 151 153 1.37 5.75
predicted
D, 260 400 500 802 1962

Table 6-8 Friction factor table gravity mode example?

In order to achieve an OD-table that complies with the congtraints we gpply the Furness
iteration process to the starting matrix in Table 6-8, in the same way as described in the
growth factor method. The end-result isgivenin Table 6-9.

Verplastsngen T;; berekend met het zwaartekrachtmodel

1 2 3 4 a a
1 157 98 69 76 400 410.0
2 59 204 101 % 460 379.5
3 25 45 138 192 400 229.0
4 19 53 192 438 702 428.7
a 260 400 500 802 1962
b 0.52 0.73 0.99 1.68

Table 6-9 Resultsgravity model example?

If we summarise al successve multiplication factors of the Furness processin the factor a
for the rows and b; for the columns, we can write the results of the iteration as follows:

T; =ab;F(c;)

Thisisthe usud formulation of the doubly condirained gravity modd. Note that it resembles
the growth factor moddl. Again, wecdl & and b; balancing factors and F(c;) isthe
deterrence function, obtained by cdlibration from the data in the base-year matrix.
Completely andogous to the singly congtrained growth factor model, we can aso deduce
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the singly condrained gravity modd. Inthat casea;; = 1 ¢r by = 1, and a Furnessiteration
Process is not necessary.

6.5.2 Observations regarding the gravity model

6.5.2.1 The values of the deterrence function and the balancing factors

Only the rdlative magnitudes of the values in the deterrence function matter, not the absolute
values. Thisaso gppliesto the balancing factorsa and by. If we start the Furness iteration
process by baancing the columns ingtead of the rows, we will get different balancing factors.
The ratios between the a; as well as between the by, however, remain the same.

Ancther way to expressthisis asfollows: the baancing factors and the vaue of the
deterrence function are determined up to a congtant factor; multiplying, for example, the a;
with a constant factor changes nothing in the result provided that we divide the by, the F(c;;)
or the product of both, by the same constant factor.

6.5.2.2 Alternative formulations for the gravity model

In the literature we might find different mathemetica expressons for the gravity modd.
Examplesare:

Tij :AqBijF(Cij) and Tij :liQiijjF(Cij)

In thefirst expresson, O; and D; represent departures from zone i, respectively arivasin
zonej. Theformulaarisesby writing a; as A O and b; as B D;. Theorigind baancing
factors a; and by have been replaced by the new balancing factors A; and B. Thisisnot
particularly useful. But it isunderstandable. One would like to interpret the gravity mode as
amodd that describes the trips between an origin and a destination as afunction of the
characterigtics of that origin and destination and the travel impedance between them.
Because the balancing factors & and by are difficult to interpret as characteristics of origins
and destinations, one resorts to departures and arrivals. This does not help much because
new baancing factors Ay and B; are now required, and their interpretation is as difficult as
theorigind & and by

In the second expression one does not use departures or arrivas but other variables Q and
X that are designated as the “ polarities’ of the zones of origin and destination. Theideais
that the polarity is a characteristic for a zone and that it describes a zone' s capacity to
generate trips, repectively to attract them. We gtill need the balancing factors|; and my .

6.5.3 Theoretical derivations of the gravity model

We have seen that the gravity model can be considered as an extension of the growth factor
mode with the associated Furness procedure. Although at first nothing seemsto be wrong
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with the Furness procedure, there are come conceptua problems. This can be understood
asfollows.

The gtarting point of the entire procedure was that trip behaviour could be described by a
deterrence function that gives the influence of travel impedance on the number of trips. In
the firgt iteration we distributed the tota number of departures from a zone over the
destination zones proportiona to the values of the deterrence function. This proportiondity
isdisturbed in the next iteration, when the column totals must be matched to the calculated
attractions. After convergence of the Furness procedure proportionality of the trips with the
vaues of the deterrence function over the entire OD-table isgone. This can be checked in
the examplesin Table 6-8 and Table 6-9. We cannot harmonise the trips in the entire OD-
table with the deterrence function value for each cdl and comply with the condraints a the
sametime.

This shows that the Furness procedure can, a best, be seen as a compromise between, on
the one side, optimum proportiondity to a deterrence function value and, on the other side,
complying with the congtraints posed by the ca culated productions and attractions.

Due to the ungtable theoretical basis of the gravity moded as based on the Furness
procedure, one has sought other arguments to prove the vdidity of the gravity mode!.

We will very briefly discuss two dternative arguments for the vdidity of the gravity modd,
namely a derivation based on the theory of entropy, known from physics and information
theory, and a derivation based on discrete choice theory.

6.5.3.1 Derivation gravity model from the principle of maximum entropy
Assume that we have to estimate an OD-table based on given margind sums of the table
(sums of origins and degtinations). The problem isthat very many (in fact an infinite number
of) OD-tableswill match the given margind sums. Figure 6-2 shows an example.

5 0 |5 4 1 |5 3 2 |5
1 2 (3 2 1 |3 3 0 |3
6 2 |8 6 2 |8 6 2 |8

Figure6-2 Different OD tableswith the same marginal sums.

All these possible OD-tables, however, do not have the same probability of occurrence.
We now assume that the particular OD-table will arise that has the grestest probability of
being redised. Using terminology from physics and information theory we can say that we
are looking for the OD-table with maximum entropy.

The number of waysin which we can divide T trips over an OD-table in such away theat the
distribution over the cdllsis Ty, is:

WT) = o5

(Thisisthe multi-nomind formula known from probability theory)
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Now our task isto find the OD-table with T;; such that:

W(T;;) ismaximd (the OD-table can arise in the maxima number of ways, i.e. hasa
maxima probability to arise) under the congtraints:

[o]
a_-Tij:Dj

If we solve this maximisation problem we do not distinguish between tables T; with many
trips on areation with great travel impedance or many trips on areation with asmal trave
impedance. To make al OD-tables comparable we add a condition concerning totd trip
codis across the entire matrix:

a T;c; = C where C isacongtant
i

Solving this maximisation problem (using Lagrange multipliers) leeds to:

_ - b ;
T, =AOBD, e (Whereb isrdlated to C)

Thisisthe gravity modd with a negative-exponentia deterrence function. When cdculating
the totd trip cogts, the long-distance trips in the condition 601 T,c; = C areasimportant as
ij

short-distance trips; if we write the condition in the more generd form é j T;9(c;)=C,

where g isamonatonoudy increasing function of c;;, we obtain one of the common
formulations of the gravity modd:

T = A O B D f(cy)

6.5.3.2 Derivation gravity model from discrete choice theory

Because the digtribution problem is essentidly a problem of choice of origin and degtination,
we can gpply the discrete choice theory that was dedlt with in chapter 3.

Theindividud utility U; ;P for person p of the choice of i asorigin, j as destination and
meaking atrip from i toj congsts of a number of components:

Ui,jp - Vip + \/jp + Vijp + eijp
where:

Vi theobservable utility for person p of an adtivity in i

V,"  theobservable utility for person p of an activity in j

Vi  theobservable utility for person p of making the journey fromii to |
e;”  anerror term; accounts for the effect of non-observed attributes
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The utilities V" and V;" are the results or positive effects that arise out of the choice of places
i and j asorigin and destination. The utilities are related to the activities that are carried out
ini andj (for example, livingin i and workingin j). Theterm V;;” on the other hand
represents the effort or the negative effect of thejourney fromi toj. Theterm V",

therefore, will have anegative vaue and this value will decrease further as the effort to be
overcome in the journey increases.

We now apply an aggregation step, and assume that the individud utilities may be replaced
by an average utility per person across the entire zone:
Ui’j =V, + Vj + Vij + €ij

If we assume that the e;; are identical and independently Gumbel-digtributed, alogit model
aoplies for the probability that atrip from i to ] will be made:

Pr(ij) = e\/i+VJ+Vij / é eVim+Vj¢+Viw
alleige

If we assume that T represents the total number of tripsin the entire OD-table, then the
expected number of tripsfromitoj is

T, = Pr(ij) T = e xe" e xg
ige

VietVietVige

The last factor in this expression equas a congtant, say K. The congtant factor has the effect
of ascding factor that ensures that the caculated trips agree with the total number of tripsin
the OD-table. After the subgtitution of variables:

exp (Vi) = a¢ exp (V) = b¢
follows:
Tij =K al¢)J¢eVii

The scaling factor K can beincluded in the factors a¢ en b;¢without loss of generdity. This
leads to:

— Vij
T, =ab e

This, in essence, isthe gravity mode in its most generd formulation. We can further
elaborate the formula above, by taking a closer look at the utility of atrip V;;.

Theutility V;; will be a (generdly monotonoudy decreasing) function of the travel impedance
betweeni andj.

V, = f(c,)

1]
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After substitution of exp(f (c;)) by F(c;j), we obtain the well-known form of the gravity
modd:

T, =abF(q)

If the negative vauation of thetrip is one of “coss’ and if the travel impedance cjj is more or
less proportiond to the distance or the travel time between i and j, the function for the
disutility will gpproximeate alinearly decreasing function:

Vi

J»'bCij (b>0)
In that case the gravity mode with an exponentid deterrence function arises.

Tij » aibj e-bqj'

Given the subgtantial amount of Smplifying assumptions mede (namdly the assumptions
inherent in the logit modd and the aggregation step) it is not surprisng thet the gravity model
merely gives an gpproximate description of the digtribution.  Subgtantia differences can,
indeed, arise between observations and vaues calculated by the gravity modd, particularly
when detailed comparisons are made & the level of particular origins and destinations. In
general, however, and taken across the entire OD-table, the observations and mode values
match ressonably well in practice.

6.5.3.3 Conclusions theoretical derivations

We have seen that the gravity model is essentidly based on a Furness iteration procedure
where the deterrence function vaues are used as sart values. In addition, the gravity model
can be derived using the principle of entropy or from discrete choice theory. These
derivations do not prove the “correctness’ of the gravity modd as such, but they increase
our confidence inits correctness. The predictive vaue of the gravity moded should redly be
edtablished by drictly controlled experiments, asis done in the natura sciences.
Unfortunately, such a procedure is hardly ever possible in the socio-economic sciences.
(Traffic science, traditionaly seen as an engineering discipline, has much common ground
with the socio-economic sciences.)

6.5.4 Calibration of the deterrence function

When we discussed the deterrence function, we noted that determining the parametersin
that function must be done through cdibration with available observations for the study area.
In this course, we will confine oursaves to afew introductory remarks about the calibration
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process. For thoseinterested in amore in-depth trestment of this subject, we refer to a
future follow-up course.

Assume that an OD-table with observationsis available for a base-year. Assume that a
digtribution modd is gpplicable to this OD-table, for example the gravity modd discussed in
thiSChaf)tG’: Tij =q bj f (Cij)

Parametersin this distribution mode are &, bj and the parameters in the deterrence function
f. To cdlibrate the deterrence function now means. determine the parametersin the
distribution modd in such away that maximum agreement is achieved between the observed
OD-table and the OD-table that has been caculated by the digribution modd. A much
used term in this context is “best fit” of distribution mode and observations.

How can the parameters be determined in order to achieve abest fit? An obvious method
is“trid and error”. Wemake aninitid estimation of the parameters based on insght and
experience. Wethen carefully try to adjust the parameters to improve the match. In
practice, however, thisis avery time-consuming method. We need a more systematic way
to carry out the caibration.

Many cdibration methods have been proposed over the years. One of the most efficient
methods is based on the maximum likelihood principle, awel-known datigtical estimation
method. An example of this method is the so-called Poisson-estimator that will be dealt
with in afuture course.

In the previous section we assumed that we had access to an observed OD-table for the
cdibration. In many cases, however, we have no observations for the cells in the OD-table,
athough we do have counts on the links of the network; vehicle counts, for example, on
severd road sections. Depending on the route choice of the travellers a number of OD-
relaions can use the same link in the network. We must then reconstruct the OD-table asiit
were, using aroute choice modd. Route choice models are dealt with in the chapter about
assgnment. Cdibration usng counts on network links is dedt with in afollow-up course.

6.6 Application aspects of distribution models
We conclude this chapter about distribution models with a short discussion of a number of
practical application aspects.

6.6.1 Intra-zonal traffic

Intra- zond traffic conggts of trips that have their origin and destination inside the same zone.
This contrasts with inter-zond traffic with origin and destination in different zones. We use
the travel impedance between the centroids of the zones involved for the inter-zond trips,
whereby traffic is assumed to travel viathe modd network. The traffic enters and leaves the
mode network viathe connectors. Intra-zone trips, on the other hand, do not use the
network. Thus travel impedance between origins and destinations are not known. This can
lead to problems because, due to their short distance, the volume of intra-zonal trips
tendsto be large. There are two approaches to address these problems:
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Use small zones and possibly do not include the intra-zond traffic in the digtribution
modd.

Approximete the intra-zond impedance levels, for example as afunction of the zone
area or as afunction of a characteristic diameter of the zone.

6.6.2 External zones

When gpplying a ditribution modd, the levels of impedance between the zones must be
known. This generdly appliesto the zonesin the sudy ares, theinternd trips. A substantial
part of the traffic will, however, have its origin or destination outsde the study area. Itis
aso possible that both origin and degtination lie outside the study area, though these trips
traverse the study area. The travel impedance to and from these externd zones (aso cdled
the area of influence or externd ared) is harder to define.

A possible gpproach to this problem isto calculate the internd trips by a synthetic
digribution modd (the gravity modd, for example) and to use a growth factor mode for the
remaning trips. The data necessary for this purpose can be obtained from counts on a
cordon (aclosed circle) situated around the study area.

6.6.3 Conversion of the OD-table to suitable units

The results of the digtribution calculation serve as an input into the next phase of the treffic
demand modd, namely assgnment. Distribution models usudly dedl with persond trips.
These can be trips per day, peak-period trips or trips aggregated over some other time unit.

In an assgnment modd for car traffic one will need, for example, data on vehicle trips/hour
during the peak period. Factors such as degrees of vehicle-occupation and peak-hour
coefficients are used to carry out a simple converson to suitable units.
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7 Transport mode choice

The different phasesin the traditiond traffic demand mode show alogica sequence. First
the production and attraction modd is used to determine the number of trips that can be
expected. Then the distribution model is used to establish where these trips go, in other
words origins and destinations are determined. The assgnment phase, which will be dedt
with in chapter 8, cdculates how the trips take place in practice, with the emphasis on the
route choice process.

Going somewhere not only involves a choice of route but dso a choice of transport mode.
The digtribution of trips over the various transport modes is caled the modal split.
Moddling trangport mode choiceis one of the classcd problemsin traffic engineering.

The various modalities incude waking, cycling, driving, public transport and perhaps some
other possibilities depending on locd customs. Due to the high socid relevance of this
theme, the emphasis usualy is on the choice problem between car and public transport.
Because of road network congestion and environmenta degradation caused by road traffic,
the relevant policy-making agencies usualy aim to encourage use of public trangport. Itis
very important, therefore, to have models that are sengtive to the attributes that influence the
choice of trangport mode.

We begin this chapter with a short overview of those factors that have a determining effect
on transport mode choice.

Over the years, the place of the transport mode choice modd within the traditiona traffic
demand mode has changed quite a bit. 1t was originaly thought that transport mode choice
had to be moddlled as part of production and attraction. In doing so, however, the network
characterigtics are unable to influence the transport mode choice. Thus, it became
preferable to incorporate the trangport mode choice in the digtribution phase. We will
discuss these so-called smultaneous and sequentia choice models for distribution and
trangport mode choice a length.

7.1 Factors that influence transport mode choice

Many factors influence transport mode choice. First and foremost thereis the availability of
the various means of transportation. People who have no choice but to use one or other
transport mode are called captives of that transport mode.

The word captives is mogt often used in connection to public trangport. When a household
has no access to a car while the destination istoo far away to cycle or walk, and when
family income does not stretch to car hire or taxi, the family member is said to be a public

transport captive.

However, it is aso possible that thereis no provision of public trangport to a destination, or
the nature of ajob is such that public transport does not apply. In such cases, people
necessarily depend on cars and become car-captives.

Those people who are not captive to one or other form of transport are called choice-
travellers. Itisassumed that these travellers base their choice of trangport mode on rationa
congderaions. Thefactorsthat play arole in this process can be divided into three groups.
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Traveller characteristics It gppearsthat there is a connection between transport mode
choice and socio-economic characteristics such as profession, income, age, etc. The
most sgnificant characteridic is car availability. This characteridtic is closely connected
to the above mentioned socio-economic characterigtics.

Transport mode characteristics In thisgroup of characterigtics the differencesin

travel time and costs between the transport modes are particularly important. However,
factors such as parking opportunities and comfort, safety, and reliability aso feature,
Trip characteristics The purpose of the trip plays arole here. People might use public
trangport for the recurrent home-based work trip, and use the car to go shopping. The
point in time a which the trip is undertaken is dso of sgnificance.

Any traffic modd that is intended to represent the transport mode choice accurately should
redly be sengtive to most of the factors above. In practice however, most applications
confine themsdvesto travel impedance in the mode choice modd. We refer to the chapter
on digtribution for adiscusson of the concept of travel impedance.

7.2 Transport mode choice as part of production/attraction calculations

In the padt, especidly in the US where the first devel opments of the traditiond traffic
demand model happened, the calculation of the transport mode choice was a part of the
production and attraction modd. Productions and attractions are also known astrip-ends.
Thisiswhy these moda split models are also called trip-end modd split modds.

The reason that the caculations were carried out in the production-attraction phase was
because the transport mode choice, which was mainly considered to be a choice between
car and public trangport, was primarily determined by persona characteristics such as
income. In some cases, the extent of the availability of public trangport services was added
in the form of akind of accesshility index.

The disadvantage of the calculation of the modd split during or directly after the production-
and attraction phase is that the destinations of the trips are not yet known at thisstage. This
means that the network characteristics cannot yet be included in the moddl. Asa
conseguence, these models do not respond to policy decisons, such as, for example,
improvements to the public trangport network. Thisis the main reason why trip-end modal
split models are no longer used.

7.3 Transport mode choice as part of the distribution calculation

When the calculation of the trangport mode choice is done as part of the distribution
caculation, one spesks of trip-interchange modds. Carrying out the moda split calculation
in combination with the didribution isalogica option. The disadvantage of trip-end modds
is absent, since trip characteristics such as trave time can now be included in the calculation
of the trangport mode choice. Destination choice and transport mode choice are, moreover,
closely connected. These kinds of models have, therefore, become widdy used.
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7.3.1 Simultaneous model distribution/transport mode using multi-modal gravity
model

The gravity model that we used to calculate the distribution can be adapted so that
assignment over the trangport modes is Smultaneoudy calculated.

In chapter 6 about distribution we learned that the gravity model for one mode of transport
(auni-modal gravity model) can be derived using the concept of entropy or using the logit
mode that originates from discrete choice theory. When there is achoice of transport
modes between the same origin and degtination it is possble to derive a multi-modal
verson of the gravity model. Wewill illugtrate this by a derivation using the logit modd.

The choice st for the logit mode in the uni-moda gravity modd conssted of dl pairs of
origins and destinations. When there is a choice between severa trangport modes we get an
enlarged choice set because one or more transport modes must now be included per origin-
degtination pair.

If we assume, as we did in the derivation of the uni-moda gravity modd, thet the individua
utilities can be replaced by amean utility per person across the entire zone, the following
expresson arisesfor the utility of the choice of i asorigin, j as destination and the
undertaking of atrip from i to j using transport mode m:

Uy"= Vit Vi+ V" + g

Vi the observable utility for an activity in i (living, for example)

V the observable utility for an activity in j (working, for example)
V;™  theohsarvable utility of travel from i to j by moddity m

e;"  astochastic error term (effect of unobserved attributes)

The difference with the derivation for a single trangport mode is the addition of the index m
for the various trangport modes between i and j. If we accept that the error terms g™ are
identica and independently Gumbe-distributed (unavoidable assumptions for the logit
model), we can derive as we did in the uni-modal case:

vm
'I'ijm =ab, e”

Smilar to the uni-moda case, the utility V™ represents the “effort” involved in making atrip
fromi toj using transport mode m. The greater the effort, the smaller the vaue of ;™. The
effort will be afunction of the travel impedance experienced by using trangport mode m
betweeniandj. Itisvery likely, moreover, that the functiona form will depend on the
transport mode, hence the addition of index m to the function f:

\/ijm = f m(C.rjn)
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After substitution of exp( f "(c;") by F™(c]") weeventualy get:

Tijm =ab, Fm(QT)

thus

T, = é- Tijm¢:aibj é. Fmt(qrjm)
mdl ij mel i

In words: the distribution of the transport flows across the various transport modes m
between an origin i and a destination j is proportional to the values of the deterrence
function F™(c;™) for those transport modes.

A critica point in this derivation is the assumption regarding the independence of the error
termse;™. Since anumber of dternatives in the choice set gpply to trips between identica
origins and destinations, this independence may be doubtful. On the other hand, if one
accepts that the variance in the totd utility largely arises from the differencesin perception
between the trip impedances, the assumption of independence in the error terms may be
judtified after all.

Thusfar, we assumed that dl the dternatives in the choice set are Smultaneoudy available.
There is a gmultaneous choice for destination and transport mode. Thisiswhy thismodd is
cdled a simultaneous choice model for distribution and transport mode.

Ancther option isto assume a choice hierarchy. This could be a choice of destination first
and only when this choice has been made, a choice for trangport mode. Thisleadsto an
hierarchica or sequential choice model for distribution and transport mode, which isthe
subject of the next paragraph 7.3.2.

The amultaneous multi-moda gravity model assumes the availability of separate deterrence
functions per transport mode. Since deterrence functions usualy need to be further
differentiated according to trip purpose and persond characteristics, a set of deterrence
functionsis required before a caculation with the gravity modd can be carried out. If one
digtinguishes, for example, between the persond characteridtic “ car-available’ and “car-not-
availabe’, the trip purposes “work” and “other” and the moddlities “car”, “public trangport”
and “bicycl€’, one needs a set of 12 deterrence functions.

Example of a calculation using the multi-modal gravity model:

Assume that there are three zones A, B, and C. The available transport modes for dl
relations are car, bicycle and public trangport. We do not differentiate as to purpose or
persond characteristics.

The margina condraints, caculated by a production and attraction modd, are given in
Table 7-1. Thetask isto insert trips per trangport mode in the Table.
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Margina congraints (car, bicycle and public transport combined!)

A B C predicted
O
A 100
B 100
C 200
predicted 400
D, 200 150 50

Table7-1 Marginal constraints multi-modal gravity model example

We need the deterrence functions per transport mode. The values of the deterrence
function per trangport mode (friction factors) are given in the OD-Table 7-2.

Friction factors F;;"(c;i™)
A B C
car 20 10 2
A bicyde 10 5 1
public transport 4 3 1
car 10 20 5
B bicyde 5 10 2
public transport 3 4 2
car 2 5 20
C bicyde 1 2 10
public transport 1 2 4

Table 7-2 OD-table with friction factorsper transport mode

We now have al data needed to calculate the OD-table per transport mode. It is more
correct to say that we will determine three OD-tables: one per transport mode. We must
first aggregate the vaues of the deterrence function per OD-pair This givesthe resultsin
Table 7-3.

Now, aswas done in chapter 6.5.1, the table is used as a Sarting matrix for the Furness-
process.
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Aggregated friction factors é R

A B C a predicted
: O

A 34 18 4 56 100

B 18 34 9 61 100

C 4 9 34 47 200

a 56 61 47 164

predicted

D, 200 150 50 400

Table 7-3 Friction factors aggregated by trangport mode

After anumber of iterations of the Furness-process we then find the total number of trips
cdculated by the gravity modd. Thetripsin Table 7-4 are the sums of the trips across dl

trangport modes.
Trips (al modes) by gravity modd

A B C a a

i

A 78 22 0 100 1.01
B 50 48 2 100 1.23
C 72 80 48 200 7.85
a 200 150 50 400
by 2.27 1.14 0.18

Table 7-4 Total number of trips multi-modal gravity model example

Lastly we distribut the total number of trips across dl trangport modes, in proportion to the

vaue of thefriction factors The result is shown in Table 7-5.
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Trips by transport mode
A B C Totd O™ | Tota
O

car 46 12 0 58

A bike 23 6 0 29 100
publ tr 9 4 0 13
car 28 28 2 58

B bike 14 14 0 28 100
publ tr 8 6 0 14
car 36 44 28 108

C bike 18 18 14 50 200
publictr | 18 18 6 42
car 110 84 30 224

Totd D" bike 55 38 14 107
publ tr 35 28 6 69

Totaal D; 200 150 50 400

Table 7-5 Final results multi-modal gravity modd example

7.3.2 Sequential model distribution/transport mode via the logsum

Assume that we want to do the modd split caculation after the distribution calculation. We
first determine the total of al trangport flows (without regard to transport modes) between
each origin and destination using adistribution modd. I there are severd transport modes
between an origin and a destination, car and train for example, we digtribute the complete
transport flow across the transport modes concerned after the distribution caculation, using
alogit modd.

This, however, presents a methodologica problem. We need the travel impedances
between dl origins and destinations and a deterrence function to carry out the distribution
cdculation, usng agravity mode for example. But when we sart the digtribution caculation
we have no information yet as to how the flows are distributed across the transport modes.
It isunclear, therefore, what travel impedance and deterrence function we should use for a
specific origin-destination pair. Should we use the car- gpecific vaues, the train-specific
vaues or akind of average of the two?

Let'slook at travel impedance. Assume that there are two possible transport modes
between a particular origin and destination. It would seem acceptable to take the average
travel impedance of these two trangport modes as representing the travel impedance for the
relation. But thisisincorrect. Assumethat the traveller estimates the impedance by car
between A and B to be 30 minutes for example (generdised travel time). In that case the
introduction of atrain connection between A and B with an estimated impedance of 40
minutes of generdised trave time will not make the overal impedance on the relaion (30 +
40)/2 = 35 minutes. In generd one could say that the overdl experienced travel impedance
on arelation decreases when an additiona travel option isintroduced. At mog, it will
remain equd to the impedance that prevailed befére the introduction of the dternative
transport mode. Nor isit entirely satisfactory to equaise the overdl impedance to the
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minima impedance of dl transport modes on arelation. This does not do justice to the fact
that the objectively worst connection, for example in terms of trave time, will till be
preferable in the subjective perception of sometravellers. Aswe have shown when
discussing discrete choice theory, we smply do not know al the considerations that help
travellers decide on a particular transport mode.

The problem above can be solved by using the train of thought expounded in the calculation
method of the hierarchicd logit modd in chapter 3.6.2.

We didtribute the total transport flow (aggregated over dl transport modes) across dl origins
and destinations using the following gravity modd (see chapter 6.5.3.2):

_ Vi
T _aibj €

Here, Vj; isthe utility related to the trip between i and j taken over dl transport modes
serving the connection between i and j. Remember that V;; has a negative vaue and that the
vaue decreases as the effort involved in making the trip increases. If there are severd
trangport modes between i and j, we caculate the combined (or replacing) utility by the
following formula

Vij =q LSj

inwhich LS; isthelogsum (over al transport modes between i and j) given by:

LS, =in§ "

mdl ij
and where, moreover: 0<q £1

We next find the trangport flows per modality by applying the logit modd, where the various
trangport modes represent the choice dternatives between the same origin and destination:

If g = 1, then the model discussed here is algebraically equivalent to the simultaneous
model we discussed in the previous paragraph 7.3.1. (See also the discussion of the
hierarchic logit model in chapter 3.6.2.)

It is sometimes argued that the choices of destination and transport mode are made
samultaneoudy. When choosing a detination one a o reflects on the availaole trangport
optionsto that destination. Others argue that the choice of destination comes before the
choice asto the kind of transport mode (i.e. a sequentiad choice process). Both
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observations bear some truth. Things aso depend on the purpose of the trip and other
factors.

Because it gppears that distribution and transport mode are Smultaneoudy cdculated in the
muiti-moda gravity modd, while when using the logsum method the transport mode is
caculated subsequent to distribution, the impression is created that both cal culation methods
reflect different points of view. Aswe noted above, thisonly applieswhen q < lisinthe
logsum method. When g = 1 both methods are equivaent and can be derived from one
another.

To conclude, we point out that the gpplication of sequentid choice modds using hierarchicd
logit models has been put forward in the literature (see for example Ben Akivaand Lermand
(1985)%), but that the sequential choice model isrardy used. Thisis probably because, in
practice, the determination of the correct choice structure and the estimation of the
parameters may lead to problems.



8 Traffic assignment

The traditiond traffic demand mode conssts of the following sub-models:

A production modd and an attraction modd with which the number of departures and
arivalsis assessed.

A modd for didribution and transport mode choice to determine OD-tables with trips
per transport mode.

A traffic assgnment modd that is used to convert the data from the OD-tables to flows
on the links of the network for the various transport modes.

This chapter deds with traffic assgnment modds, the third phase of the traditiond traffic
demand modd. We confine oursdvesto the basic principles of traffic assgnment models.
Those wishing more information are referred to the standard text on this topic by Sheffi
(1985)°.

The primary concern in traffic assgnment moddsisroute choice. It would appear sdif-
evident that atraveller would, in principle, choose the shortest route to his point of
dedtination. Thisiswhy shortest route dgorithms play an important role in traffic assgnment
models.

Since there are such large differences between networks for private transport (car, bicycle,
etc.) and public trangport, they will be dedlt with separately.

8.1 Traffic assignment models for road networks

8.1.1 Shortest route in a road network

In the traffic assgnment model discussed in this chapter, the shortest route (also called the
shortest path) in the network must be repeatedly determined between an origin and a
dedtination. There are many shortest path agorithms. We will discuss one on the best
known and most used, namely Dijkstra’s algorithm.

Assume we are looking for the shortest path between nodessand t in anetwork. To that
end, Dijkstra s dgorithm builds atree (a shortest route tree) starting from s. Thisiswhy this
agorithm isaso caled a*“tree builder dgorithm?”.

Starting out from swe travel through the network and label every node u on the way with
L(u). Thislabd L(u) indicatesthe length of the provisondly discovered shortest path from s
tou. Thelabdsareinitialy provisona and can be changed in the course of the algorithm as
we find a path that is shorter than the current value of L(u). When alabe can no longer be
changed (node no longer present in set T in the dgorithm below) it becomes a definitive
labdl.

In the agorithm below the following notation is used:

Vv the set of dl nodes

T the set of al nodeswith aprovisiond label
S the node of origin

t the node of destination
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u,v  gened indicaion for anode
e generd indication of alink

The dgorithm reads.
step 1 L(s): = Oandfordl vl V, vl s: L(v)=¥
step 2: T:=V
step 3: Letul T forwhich L(u) isminimd:
If L(u) =¥ then stop; thereisno solution.
fu=t thenT:=T - {u} and stop;
(L(t) isthe shortest route from sto t)
step 4 For eech link efromutovi T:
If L(v) > L(u) + length(e) then L(v) := L(u) + length(e)
Step 5: T:=T - {u} and goto step 3.
Example:

We illustrate the algorithm by determining the shortest path between A and H in the
network shown in Figure 8-1.
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Figure8-1 Example Dijkstra's shortest path algorithm.®

Node A receives the label 0, all others the labd 'infinite. Nodes B, C and D receive the
provisond labels 2, 6 and 7. Node A is now made definitive, that means that it is removed
fromtheset T.

Now L(B) =2isminima. NodesE, F and C are directly connected to B. We now set
L(E) =9 and L(F) = 17. Node C dready has the provisona label L(C) = 6. Sincethis
provisona label exceeds L(B) + 3, L(C) isreplaced by the new provisiona vaue of 5.
Node B now becomes definitive with L(B) = 2 and is removed from set T.

Node C from set T now has the smallest label. We check the links coming from C, where
necessary adjust the labels of the nodes that are connected to C and make the label of C
definitive.

This process is repeated until L(H) achieves adefinitive label value. Thislabel value (14)

indicates the length of the shortest path from Ato H. Table 8-1 shows the course of the
agorithm. Definitive labels are underlined.
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A B C D E F G H Figure 8-1
0 ¥ ¥ ¥ ¥ ¥ ¥ ¥ a
0 2 6 7 ¥ ¥ ¥ ¥ b
0 2 5 7 9 17 ¥ ¥ c
0 2 5 7 9 17 8 ¥ d
0 2 5 7 9 16 8 ¥ e
0 2 5 7 9 16 8 14 f
0 2 5 7 9 16 8 14 g

Table8-1 Solution of the shortest path example.

If, when labelling a node, we remember viawhich link this node was most recently labelled,
we aso know at the finish of the dgorithm which links condtitute the shortest path to this
node. The agorithm above stops as soon as we have reached the destination node. If we
pursue the agorithm until al nodes have received a definitive |abd, in other words, when we
take T ='empty’ asthe criterion at which we hdt the agorithm, a shortest-route tree will be
built up from the gtart- point to each node in the network.

8.1.2 Classification of traffic assignment models

The demand for transport, given astripsin the OD-teble, varieswith time. Similarly,
network characteristics may vary over time, be it as afunction of transport demand or not.
Traffic assgnment modes can in the firgt ingance be classified according to this aspect of
time:
Satic traffic assignment models assume that trangport demand and supply are time-
independent. The traffic flows in the network that are caculated using these static
models, therefore, do not change over time and are, in fact, the flows that would emerge
if the trangport demand remained congtant over a sufficiently long time-span. We may
express this by saying that traffic is assgned to the entire route between an origin and a
degtination. Other commonly used terms for static models are steady State or 2-
dimensiond (2D) modds. A steady-gate flow isaflow that does not change over time.
The term 2D indicates an assgnment in the 2-dimensiond area of the network, and that
the dimengion of time has been |eft out.
Dynamic traffic assignment models do take account of variation in transport demand
and with possible changes in the characterigtics of the network. Asaresult, flows on the
links in the network are calculated that vary over time. Another name for dynamic
modelsis 3D or 3-dimensona models.

The dynamic modds are ill in the research stage and are not much used yet, in practice. In
this text, we confine ourselves to gatic traffic assgnment models, which have been subject
to long experience.

The smplest assgnment method isthe all or nothing traffic assignment model. This
method assigns dl trips to one route, namely the shortest. No account is taken of the
changesin travel resstance due to network loading. This modd assumes that each road
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user isfully aware of the travel impedance of dl possible routes and that they weigh themin
an equa manner.

In redity, however, severd routes between an origin and a destination are used, even when
the network is not heavily congested. Thisis due to the fact that not every road user isfully
acquainted with al travel impedancesin the network. Travel impedance of the links,
moreover, isjudged differently by different traffic participants.

This effect can be accounted for by assuming that the perception of traffic impedance varies
according to some dtatistica probability distribution in the population of traffic participants.
Thisleadsto the group of stochastic traffic assignment models. Incomplete and varying
levels of knowledge amongst the road users regarding travel impedancesin the network are
taken into account. This can be donein two ways. The first method uses theoretica
probability curvesto lead traffic aong aternative routes; the second uses smulation.

Asin the dl-or-nothing method, the stochastic model does not take into account the changes
in traffic impedance that are due to network congestion.

The models that do take changes in travel impedance of alink due to congestion into
account are equilibrium models. An equilibrium modd is used to make assgnmentsin
road networks experiencing congestion. The prime characteridtic is thet the travel
impedance (more particularly the time component of the impedance) of alink isafunction of
the traffic load. If the load on the links that initidly congtituted the shortest route increases,
traffic will search for dternative routes. Thiswill eventudly leed to an equilibrium in which
travelers will be unable to improve travel time by unilaterdly choosing another route.
Unilaterd action means. without communication, co-operation or agreement with others.
Thisis the equilibrium formulated by Wardrop in 1952 (1* principle of Wardrop), that
equilibrium modestry to caculate. Wardrop formulated a second type of equilibrium, the
so-cdled system-optimd equilibrium that will be dedlt with later on in the chapter.

Findly, the sochadtic traffic assgnment modd and the equilibrium modd can be combined.
Sochastic equilibrium models take account of the effect of congestion and of the
differencesin perception of traffic impedance by the road users.

Stochadtic effects taken into account?
no yes
Capacity no dl-or-nothing assgnment stochastic assgnment
effects
taken into yes equilibrium assgnment sochadtic equilibrium
account? assgnment

Table 8-2 Classification of static assgment models

8.1.3 Notation
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orgin

degtination

link in the network
route (successive links)

number of trips per time-unit from i to

number of trips per time-unit fromi toj viarouter
travel impedancefrom i to |

travel impedance for link a

system impedance (= g..Cy) for link a

margina system impedance (= d¢, / dqg, ) forlink a
trave timefromi to]

travel timefor link a

number of trips per time-unit on link a (intengity)

The concept of travel impedance has been discussed in the chapter on didtribution. The
travel impedance of atrip iswritten as alinear combination of the duration and costs
experienced by the traveller. In anetwork link one often uses alinear combination of travel
time and length of the link. The length of the link then becomes a measure for the travel
cogs over thelink.

8.1.4 All-or-nothing assignment

The dl-or-nothing traffic assgnment mode is avery smple assgnment method. Figure 8-2
shows an example.
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Figure8-2 Example all-or-nothing assgnment.?
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Figure 8-2a shows the network with the travel impedances dong the links. The OD-table
that needs to be assigned to thismodd is asfollows:

C D
A 400 200
B 300 100
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The tripsin the OD-table are successively assigned per OD-pair to the shortest route for
that OD-pair Journeys that end up on the same link in the network are added. Figure 8-2b
shows the shortest route-trees coming from the nodes A and B, with the trips assgned.
Figure 8-2c¢ shows the end-result of the assgnment.

All-or-nathing traffic assgnment modd s can give reasonable results in a network where
there is no congestion and which offers few aternative routes between an origin and a
degtination, and when, moreover, these few dternative routes show greet differencesin
traffic impedance. The prime function of an al-or-nothing traffic assgnment modd,
however, isits function as a building block in more advanced traffic assgnment methods, as
will become clear further on in this chapter.

8.1.5 Stochastic assignment

Condder agroup of travellers who want to move from agiven origin to a given destination.
Assume that they can choose between alarge number of routes. Each route is characterised
by a pecific totd traffic impedance that can be measured objectively. In an dl-or-nothing
traffic assgnment modd we assume that everyone will take the shortest route. However,
dueto differencesin perception, in knowledge and in other factors there will be a divergence
of opinion within the group regarding the various leves of traffic impedance. Thiswill cause
adivergence in the routes that are taken. It is this effect that a sochagtic traffic assgnment
modéd tries to account for. In principle, there are two groups of methods that can do this:

8.1.5.1 Stochastic traffic assignment with theoretical probability functions.

These methods use a theoretical probability modd, such asalogit modd for example, to
digtribute the travellers across the dternative routes. These methods have a number of
disadvantages.

The first drawback concerns the definition of the aternative routes. Redlistic networks
generdly show avery large number of routes between an origin and adestination. It is
hardly possible to include al these dternativesin atheoretica probability mode. In some of
these methods, therefore, so-called reasonable routes are determined. Again, there are a
number of ways in which this can be done. It ispossble, for example, to determine not only
the shortest route, but also the second shortest route, the third-shortest, etc. Another
method to determine areasonable route is as follows: areasonable route is defined as a
sequence of nodes, whereby each subsequent node is located further awvay from the origin
and closer to the destination. These methods are both rather arbitrary and the necessary
agorithms tend to be complex.

The second drawback is that the methods that depend on theoretical probability models are
sengtive to the way in which the network has been defined. The problemsthat can be
encountered when one applies the logit modd to route choice have been illudrated in
chapter 3.5. These are connected to the assumed identical and independent error termsin
the derivation of the logit modd.

Because of the drawbacks mentioned above, stochastic traffic assgnment models based on
theoretica probability curves are now rardly used. We will, therefore, not discuss them
further in our text.
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8.1.5.2 Stochastic traffic assignment models based on simulation

The prime characterigtic of these models is that the traffic impedance of alink is determined
using arandom number generator (Monte Carlo smulation).

The limited knowledge held by road users regarding the traffic system can be moddled by
defining the levels of link traffic impedance as sochadtic variables.

C,=c, +e,

The subjective travel resstance C, of alink isastochastic variable and is equd to the
objectively measurable traffic impedance ¢, increased by a stochastic error term e,.

E(ea ) = 0 appliesto the mean value of the error term, o that ¢, isthe mean vadue of the
subjective travel impedance C,. The objective travel impedance c, can be interpreted as the
travel impedance used in the dl-or-nathing traffic assgnment.

A Normd digtribution is usualy taken for the probability distributions of the error terms.
More important than the shape of the probability distribution, however, is the specification of
the variance of the error term. In order to ensure that the variance & route level remains
independent of network coding, it is necessary that the variance is proportiond to the link
impedance. In other words, the dispersion must be proportiond to the square root of the
link impedance.

Keeping in mind the remarks above regarding shape and variance of the probability
distribution of the error term, one arrives at the following, often used formula for the link
impedance:

C, :ca+z4/j C,

with:

Ca = the objectively measurable link impedance

z = random number from a (pseudo) norma N(0O,1)-distribution
] = afactor determining the size of the variance

Ca = subjective link impedance

8.1.5.3 Algorithm for the stochastic traffic assignment model

The dgorithm for the stochadtic traffic assgnment modd based on Smulation comes down
to thefollowing. Applying the formula above we draw lots using a random number
generator (Monte Carlo smulation) to determine the subjective link impedance for each link
in the network. We carry out an al-or-nothing assgnment on this network with subjective
link impedances, and we repeet this a number of times. Due to the eement of chance, the
shortest routes through the network will vary with each draw. This causes a digtribution of
the traffic flows across a number of routes.

We obtain the desired stochadtic traffic assgnment by taking the average of a number of dl-
or-nothing traffic assgnments carried out in thisway. The number of iterations can be fixed
to aprevioudy agreed number N. Inthat case, after each draw of subjective link
impedances, /N of the total travel demand from the OD-table is assigned to the network
usng an dl-or-nothing assgnment and findly al partia assgnments are added.



93

The dgorithm below, however, is a better choice. After each draw of the subjective link
impedances the average is taken of the al-or-nothing assgnments of the entire OD-table up
to that point. This processis repeated until the stopping criterion has been reached. The
stopping criterion could apply when the flows achieved after an iteration no longer diverge
much from the flows caculated in the previous iteration. Thisis when convergenceis sad to
have been achieved.

izi+1l
Determine C, by drawing lots
Detrmine flows Q, by an dl-or-nothing assgnment using impedances C,
f=1/i
G"=(1-) g + f Q.
until stopping criterion = true

The outcome of using f = 1/ i in the agorithm above is that each newly caculated . isthe
average of dl flows Q, drawn until that point.

8.1.6 Equilibrium assignment

In the section above, we incorporated the differences between individua road usersin our
caculation by means of a stochadtic traffic assgnment modd. This can explain why road
users choose different routes in otherwise equd circumstances. The reason isthat not
everyone shares the same opinion as to what congtitutes the shortest route.

Thereis yet another reason why traffic between a specific origin-destination pair distributes
itsdlf across severd routes. As soon asthe traffic volume of thisinitialy shortest route
increases, travel time, and thus traffic impedance, increases. Travel impedance on this
origindly shortest route can increase to such levelsthat other routes become options for the
journey. Thisisthe subject of this section. Note that this section sets out from the
assumption that there are no differences between road users! So there are no stochastic
edementsinvolved. Thisiswhy the subject to be discussed isdso caled a deterministic
equilibrium assgnment.

8.1.6.1 User-optimal and system-optimal equilibrium assignment

If the load on alink in the network increases, then the travel impedance of alink also
increases. How this can lead to the idea of equilibrium in trangport networks can be shown
by an example.

Assume that the number of road users who want to move from agiven origin to agiven
dedtination is known. Also assume that origin and destination are connected by a number of
routes. How will the road users distribute themsalves over these routes?
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If dl of them were to take the shortest route (caculated over the unloaded network) then
this route could become congested. Thiswould lead to an increase in travel impedance
aong that route to the point where this route would no longer be the shortest one. Some
road users would choose an dternative route. Congestion could aso develop on the
aternative route, etc. Eventudly an equilibrium will be reached, as formulated for the first
timein 1952 by Wardrop. (Wardrop'sfirst principle)

Traffic distributes itself across the links of a network in such a way that an
equilibrium occurs in which no individual road user can lower histravel resistance by
unilaterally (independently of the other road users) choosing another route.

If dl road users are fully aware of the travel impedances on dl links (even if they do not use
these links themselves), and if they dso judge these travel resstances in the same way,
Wardrop' sfirgt principle implies the following:

In the equilibrium situation all routes used between a given origin and destination
have the same travel impedance, while routes not used have a higher level of travel
impedance.

Wardrop'sfirgt principle describes the traffic flows that occur when each individua user
drivesto minimise his own travel impedance. It isadescriptive principle. The didribution
of traffic flowsthat occursis caled a determinigtic user-equilibrium or a determinigtic user -
optimal equilibrium assignment. The term deterministic points to the fact that stochastic
link travel resistances have not been used.

When we multiply the travel impedance on alink by the intendty on thet link we get the
systemimpedance ¢, on thet link. Thisisthe travel impedance experienced by al vehicles

together on the link:
Ca = qaca

Summation of the system travel impedance across dl links of the network leads to the total
system impedance of the network. Since travel time and/or travel distance usualy are the
most important components of travel impedance, the totd system travel impedanceisa
good measure for tota fud use (and the environmentd pollution caused) of dl vehicles
together across the entire network.

“ _ 8
Ctotaal - a qaca
a

For any flow digtribution or assgnment we can determine the total system impedance. We
could, for example, caculate the total system impedance for a deterministic user-optimal
equilibrium assgnment.

Assume that one assigns an OD-table to the network in such away that the totd system
impedance isminimised. Thiskind of assgment of traffic over the links of the network is
caled a system-optimal equilibrium assignment. In this case we dso have an equilibrium,
but now ingted of al used routes between the same origin and destination having the same
travel impedance, they have the same margind system impedance. We will return to this
point in section 8.1.6.4.

The system-optima equilibrium assgnment, was aso described by Wardrop and is
sometimes referred to as Wardrop' s second principle. Wardrop's second principleis not a
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descriptive, but a normative principle. An assgnment according to Wardrop's second
principle complies with aspecific impased norm, namely that of minimising tota system
impedance.

The term congestionfree networks when the traffic volume on alink does not influence
travel time and thus travel impedance. This generdly occurs, at least gpproximdly, at low
traffic volumes or when al network links have a high cagpacity. In section 8.1.6.4wewill
show that the user-optima assignment and the system-optima assgnment in congestion-free
networks are equivaent. Both are then equad to the flow digtribution that is calculated with
an dl-or-nothing assgnmen.

When congestion does occur, the two traffic flow digtributions differ from one another. The
totd system impedance will be higher in a user-optima assgnment than in the sysem-
optima assgnment. Congested networks will naturaly achieve an equilibrium according to
Wardrop'sfirg principle, purdly because this principle describes usud human behaviour. A
digribution of traffic flows according to the system-optima assgnment (desirable from a
socid view point, in terms of fud-use restriction and environmental degradation) presents no
gtable equilibrium. 1t is possble, for example, that such aflow digtribution givesindividud
traffic participants the chance to reduce their travel impedance, for example by unilateraly
(independently) taking another route. A system-optimal digtribution of traffic flow will,
therefore, require specific enforced traffic measures (atoll levy, for example). To emphasise
the contrast between both assgnments, the user-optima assgnment is sometimes caled a
selfish optimum, and the system-optima assgnment asocial optimum.

8.1.6.2 Time-loss functions

Anincrease in the traffic volume on alink leadsto an increase in travel time and thusto an
increase in the travel impedance on alink. On urban networks, we are not primarily
concerned with congestion-effects on the link itself, but especidly with the delays a
intersections. The connection between traffic load and travel time is represented by atime-
loss function. One of the most widely-used functions is the BPR-function (Bureau of Public
Roads):

)
ta =t;reefIOW(1+a &Oa 0 )
Scapz

In this formula:

ta = travd time on link a (including intersection dday)

toreeflow— travel time on link a in an non-congested network (“free flow”)
cap = “practicad” capacity of link a

a,b = empiricaly determined coefficients

Common vaues for the coefficientsarea = 0.15en b = 4. Note that the practical
capacity a thisvdueof a inthe formula above representsthe leve of traffic intengty
whereby the travel time on the link is 15% higher than the travel time at freeflow. The
practicd capacity, therefore, is something different from the maxima capacity of alink, thet
correponds to the maxima traffic flow that alink can carry.
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A timelaossfunction usudly is dightly risng a low volmes, and subsequently rises strongly
when the practica capacity is exceeded.

Because we are deding with travel impedance and not with travel time, we need to make
another converson to generdised trave time. This gives the following function that, for
traditiond reasons, we will dso continue to call atime loss function.

Ca = Ca(Ca)

8.1.6.3 Algorithm for the user-optimal equilibrium assignment

Algorithmsthat are used to cdculate equilibrium assgnments are o cdled capacity
restraint agorithms. They use an iterative procedure. A number of dl-or-nothing
assgnments are, in fact, goplied, and each new iteration uses the travel impedances acquired
in the previousiteration. An incremental assignment method was formerly used where
fractions of the OD-table were continuoudy “loaded onto” the network, until the entire table
had been assigned. A better procedure is the one below where the entire OD-table is
assigned to the network in each separate iteration. To ensure that the agorithm converges
(that means that the results of an iteration differs less and less from the results of the previous
iteration) it is necessary to use aweighting factor, whereby the results of the previous
iteration(s) are incorporated into the next iteration.

izi+1l
Be
Determine ¢, by atime-lossfunction: ¢, = ca( 9" ™)
Determineflows g," by using an dl-or-nothing assgment using impedances c,
Determineweighting factor f (0<f <1) (seebeow)
G =(1-f) gV +f 0
until stoppng criterion = true

Weighting factor

Thewelghting factor f  in the dgorithm aboveis used to find the new link volumes as a
combination of the flows that were cdculated in the previous iteration and the dl-or-nathing
volumes of the present iteration.

There are anumber of options for the weighting factor:

Fixed weighting factor

Forexample f =0.5

Thisisthe smplest method. Convergence, however, is not guaranteed and even if the
agorithm convergesit needs alarge number of iterations.

Diminishing weighting factor

Forexanplef =1/(i+05) or f =1/i

Withf =1/ thisiscdled the Method of Successive Averages (MSA). The effect of
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thiskind of weighting factor isthat the new flows are the mean of the al-or-nothing
assignment of dl the iterations carried out up till this point. This method gives about the
same reaults as the method with the optima weighting factor (see below), but usudly
takes more caculaion time than the optima weighting factor.

Optimal weighting factor

The weighting factors used above have the following disadvantages. Convergence of the
agorithm is not guaranteed when using a fixed weighting factor and the dgorithm is
inefficient. Although the agorithm does converge when a diminishing weghting factor is
used, the method remains inefficient. An optima weighting factor for which convergence
isguaranteed and which is, moreover, very efficient, is based on the Frank-Wolfe
algorithm. The Frank-Wolfe dgorithm is used to solve a minimisation-problem. Inthe
following paragraph we will investigate how solving aminimisation-problem isrelated to
the determination of an equilibrium assgnment.

Beckman transfor mation; equilibrium assignment formulated as a minimisation-
problem

The Wardrop conditions for user-equilibrium can be written asfollows:

Cijr = Gj when Tijr >0
Cijr 3 Gij when Tijr =0
Thelink-loads are:
o
q, = a Tijr dijra where: dijra: 1 of dijra: 0

ijr
The parameters d;;"® indicate whether aroute r between i and j does or does not uselink a.

Now the tota impedance between i and | using router is:
e
Ci; = a Ca(Qa)dijra

As shown above, Wardrop’' s user-equilibrium can be written in the form of alarge number
of mathematica equations. Solving these equations gives the solution to the equilibrium
problem, and thus finds the value of the flows on dl thelinks. This, however, presentsa
problem: solving a system comprising of a great number of (non-linear) equationsis an
extremdy difficult problem in numerica mathematics. In this context, “difficult” means that
exiding iterative solution techniques do not dways converge, or if they do converge, they
may take along time.

We now use a“trick” which is very often gpplied in numerica mathematics. The problem of
solving the equations that resulted from Wardrop' s conditions is transformed to the process
of solving an equivaent optimisation problem.  This means that solving the optimisation
problem aso gives the solutions to the origind system of equations.  Why do we use such a
roundabout way? Because finding the optimum of a function (amaximum or minimum) isa
much smpler problem for which numerous different dgorithms are avalable.
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|ntermezzo
Assume that we want to optimise afunction w = f(x,y) This can be done by taking the
derivatives rdative to x and y and setting them equd to zero.

w/qx =0
fw/fy =0

We now solve this system of two sSmultaneous equations and use them to find the vaues of
x and y for which the function w receives an optimd vaue. This example showsthat an
optimisation problem can be trandformed to solving a system of equations. Alternativey,
solving a system of equations can aso be transformed to the problem of finding the optimum
of an objective function. The objective function istha function of which the derivatives are
the equations that have to be solved.

Beckman transformation

In 1956, Beckman proved that, reasoning aong the lines given in the intermezzo above,
solving the Wardrop equations for user-equilibrium is equivaent to solving the following
minimisation-problem:

Ja
min, & 0(9)dg
a o

subject to:
2 r
aT =T,

This expresson indicates that the equilibrium flows g, are achieved by choosing themin such
away that the sum over dl links of the areas under the timeloss functionsfrom 0to g, is
minimdl.

We now return to determining the optimum weighting factor. When we described the

agorithm for the users optimum equilibrium assgnment, we saw that the result of an iteration
iswritten asfollows:

qa(i) =(1-f) qa(i-l) + f o,

The Frank-Wolfe dgorithm can now be described as an dgorithms that finds an optimal
weighting factor f in such away that at each iteration the largest possible decrease in the
value of the above mentioned objective function is achieved. We refer to Sheffi (1985)° for
more detalls regarding the functioning of the Frank-Wolfe agorithm.

8.1.6.4 Algorithm for the system-optimal equilibrium assignment

Asdiscussed in paragraph 8.1.6.1, the system optima assgnment is the assgnment of flows
in the network that minimises the total system resistance. Therefore we need to solve the
following minimisation problem:



99
min, & 0.* ()

Thefollowing istrue for agenerd differentiable function f(q):

q

f(a,) = Of €¥g)dg  wherefq) isthe derivative of f(q).
0

When we gpply this to the objective function above we get the following minimising problem:

.o B - d
min, @ Qc.(a)dg  where: Ca(q)=d—q(Q*Ca(Q))

a o

Thefunction ¢, (q)isthe so-caled marginal systemimpedance function for link a, and

can be interpreted as the increase in system impedance on link a (the travel impedance
experienced by dl road userstogether), for an infinitesemd increasein intendity from qto g
+dgonlink a. If asngle new traveller arrives on link a the travel impedance on the link
increases. Not only the new traveller experiences this as a nuisance, but also dl the road
users who aready were on the link.

The objective function above shows a remarkable smilarity to the objective function that we
hed to minimisein order to find a user-optima equilibrium assgnment. The only differenceis
that the time loss function c,(q) has been replaced by the margind system impedance
function C,(q)). Thismeansthat we can apply the agorithm of the user-optima equilibrium
assignment to find a system optimal assgnment, as described in section 8.1.6.3, on the
understanding that we replace c,(q) by C,(q)). It dso meansthat in asystem-optimd
equilibrium assgnment the margina system impedance is equd for al used routes between
the same origin and destination, not the normal travel impedance (asisthe casein a user-
optima assgnment).

It now aso becomes obvious that in congestion-free networks (meaning networks where all
links experience no influence of traffic volume on the travel impedance) the user-optima
assgnment and the system-optimal assgnment are equd. For in that case ¢c,(q) is aconstant
function, and c,(q) = ¢, (q) appliesfor dl q.

8.1.6.5 Numerical example equilibrium assignment

The ideas that play an important role in the equilibrium assgnment will be discussed ina
detailed example, taken from Ortlizar and Willumser?. Figure 8-3shows asimple network.
Locations a and b are connected by links 1 and 2. Thetime-loss functions for the two links
are indicated, and shown in the figure. (For the sake of clarity, the time-loss functions have
been kept smplein order to make the calculations easier to understand.) The number of
tripsfromato b isTy.
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Since the network is so ample, the caculations can be written down andyticdly. Thisis not
possible for complicated networks, when the iterative algorithm in section 8.1.6.3 needs to
be used.

- e

2

¢, = 10+ 0020,

C, = 15+ 0.005 (o]
40 7
35
30 1
25 1
5
£ 20
e L—2
(8]
15
10 1
54
0 t + + + +
0 200 400 600 800 1000 1200 1400
ga (vrt/uur)

Figure 8-3 Example equilibrium assgnment

Question 1.

Cdculae theintengties on the two links for variousvaues of T,

a Tp<250

For T., <250 it isobviousthet dl traffic will uselink 1. Thisis becausein that case the
travel impedance c¢; < 15, which is smaller than the travel impedance that can ever be
achieved on link 2.

b. Ta>250

Assoon as Ty, > 250, the traffic will be distributed over both routes in such away that the
travel impedance on both routesisidentical (Wardrop's 1% principle) and that the sum of
both flows equals Tap.

Assume, for example T, = 2000
then:
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10+ 0.02q, = 15+ 0.005q,
g, +q, =2000

which leadsto: g; = 600, g, =1400and ¢; = ¢, = 22.
Thissolution isshown in the graph in Figure 8-3.

Quedtion 2:
Find the user-optima assgnment for T, = 2000 using the Beckman transformation.

We need to solve:
G %

min,, .,{ 10+ 002q)dq + Y15+ 0.005q)dq} =
0 0

min, , {10q, +001q? +15q, + 0002507 } =
min,, {10q, +001g? +15(2000- g,)+ 00025 (2000- q,)?}

By taking derivates and setting them to equd to zero, we find that the objective function is
minimd for g; = 600. Therefore g, = 1400 and ¢; = ¢, = 22. Thisisthe same solution that
we found in question b.

In this smple case we can aso use agraph to show that the equilibrium flows are achieved
by choosing them in such away as to minimise the sum of the areas under the time-loss
functions, as ea@orated in the discussion of the Beckman transformation. See Figure 8-4.
Both time-loss functions are depicted in one graph. The horizonta axis has been given two
scdesin opposite directions in such away as to make the sum of the flows g, and g, equa
to 2000. It iseasy to seethat the sum of the areas under the time-loss functionsis minimd
for ¢, = ¢,, with the associated g; = 600 and ¢, = 1400. At another combination of flows,
0: = g, = 1000 for example, the sum of the areas increases by the verticaly hatched part.
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Question 3:
Cdculate the system-optima assgnment for T, = 2000

The system impedances on the links are;

¢, =g, (10+0.02q,)
¢, =0, (15+0.005q,)

The margind system impedances are:

A

— dé
c, = dqz =15+001q,

In the system-optima equilibrium assgnment the margind travel impedances dong both
routes are equal (Wardrop’s 2™ priniple).

10+0.04q, =15+ 001g,
g, +d, = 2000

Thisleadsto: g, =500, g, =1500en ¢, =¢, =30
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Quedtion 4:
Find the system-optima assgnment for T, = 2000 using the Beckman transormation.

We need to solve:

G2

%
ming,.{ (10+004q)dq + 15+ 001g)dq} =
0 0

min, , { 10, +0.02q’ +15q, + 0.005¢; } =
min, {10g, +002¢7 +15(2000- g;) + 0005(2000- q,)° }

Differentiating and setting the derivative equd to zero we find that the objective function is
minima for g; = 500. Therefore g, = 1500 and ¢, = ¢, =30. Thisisthe same solution as

the we found in question 3.

The results of the caculations for T,, = 2000 are shown in Table 8-3. Thetrave
impedances, margind travel impedances and system impedances are included for the user-
optima and the system-optima assgnment.

user-optimal system-optimal
link 1 link 2 total link 1 link 2 total
Flow 600 1400 2000 500 1500 2000
Impedance 22 22 20 225
Marginae impedance 34 29 30 30
System impedance 13200 30800 44000 | 10000 33750 43750

Table 8-3 Results equilibrum assignment example

Note in the system-optima assgnment that the total system impedanceisless by 250
vehide-costminutes per hour compared to the total system impedance in the user-optimal
assignment. Although thisis socidly desirable (saving on fue codts etc.) the associated flow
digribution over the links cannot be forced without additional messures. The travel
impedance dong link 1 in the system-optima assgnment is, in fact, smaler than that dong
link 2. Thiswill lead some link 2 usersto changeto link 1. The equilibrium of the user-
optima assgnment eventualy would occur, whereby the travel resistance aong both routes
isequa to 22 minutes of generdised trave time.

8.1.7 Stochastic equilibrium assignment




104

A variation of Wardrop'sfirst principle gpplies to the most advanced (and most redlistic)
datic assgnment method, namely the stochastic equilibrium assgnment (formulated by
Daganzo in 1977):

Traffic distributes itself across the links of a network in such a way that an
equilibrium occurs in which no individual road user thinksthat he can lower his travel
resistance by unilaterally (independently of the other road users) choosing another
route.

Take note of the underlined word in the above definition. It isabout the persona perception
of road users. System impedance is higher in astochastic equilibrium assgnment thanina
determinigtic equilibrium assgnment. But it will approach it as the uncertainty of the road
users regarding the travel impedances in the network decreases.

The dgorithm that we give conggts of a combination of the adgorithms of the equilibrium
assgnment and the stochastic assgnment. The dgorithm isidentica to the dgorithm of the
equilibrium assgnment, with one exception: the “do an al-or-nothing assgnment” is replaced
by the “do a sochastic assgnment”. We aready discussed the way in which a stochastic
assignment is done earlier in this chapter.

izi+1l
Determine ¢, with time-lossfunction: ¢, = ca( g.™Y)
Determineflows g," by a tochastic assignment using impedances c,
Determineweighting factor f (0<f <1)
qa(i) =(1-f) qa(i_l) +f 0a"
until stopping criterion = true

The MSA method can be used to determinef  in the dgorithm above. Faster convergence
can be achieved by adaptation of the objective function that isto be minimised using the
Frank-Wolfe dgorithm. See Sheffi (1985)°.

8.2 Traffic assignment models for public transport networks

Thereis an essentid difference between a network for public transport and one for private
trangport, such asacar network. The public transport network is based on lines, where
sarvices are maintained by anumber of vehicles. The cagpacity of alineislinked to the
passenger capacity of the vehicle and the frequency of the service.

8.2.1 Travel impedances in public transport
Thetravel time from an origin to a detination by public transport comprises the following
components.

feeder trangport from the origin to the busstop or station,
waiting time at the busstop or gation,
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travel timein the vehicle,
possible transfer waiting-time,
getting from the busstop or station to the destination address.

These components are accounted for in the network by the introduction of links for

transport to and from busstops and stations and transfer links. The attributes of these links
consg of the travel times (waking, cyding, etc) involved in getting to and from busstops and
dations and waiting times.

In the chapter about distribution, we aready saw that, though dl time components can be
measured objectively in minutes, not dl travellers perceive these components identicaly. A
minute spent waiting, for example, is perceived as a greeter travel impedance than a minute
of effective trave timein the vehicle

To determine the travel impedances, financid costs converted to generaised trave time,
must be added to the time components mentioned above.

8.2.2 Waiting times

We use the following notation:

= frequency (vehicles per time-unit)
= interval between two vehicles (=1/f)
travel time between stops

= waiting time

= travellers per time unit (demand)

—Er—l-j—h
I

The time spent waiting a a stop that is served by one service depends on the intervd h
between two vehicles (i.e. on the frequency of the service) and on the variance of the
intervas.

A Waiting
passengers
v« Ih
>
‘- > —— > > tl me
h1 h2 h3

Figure 8-5 Waiting passengersat a public transport stop
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Assume that the arriva pattern a astopis|  passengers per time-unit, uniformly distributed
over time. Condder K intervals. The aggregate waiting time W for dl travellers equas the
surface of thetrianglesin Figure 8-5.

K
W=ail K

k=1
The following applies to the number of travelersN that arrives at the stop:

&
N=al h
k=1

The average waiting time per traveler, therefore, is.

=

]
N1
Qo=
Qo=

h2/Q h,

=~
Il

1

=~
Il

1

We can now write this as a function of the means of h? and h:
w=4(h?/h)
A generd expression for the sample variance S2 is
—_— 2
S =h*-h

So the mean waiting time can be written as.
w=4(h+S/h)

HAlf of theintervd is often used for the mean waiting time (when travdlers arrive uniformly
over time). The derivation above shows that this gpplies, gtrictly taken, only when the
variance of the intervas equas zero, i.e. in the case of a completely regular service. In the
case of random arrivals, the average waiting time exceeds haf of the mean interva duration!

Example:

Assume:

mean duration of interval h =10 min and standard deviation S, = +/10, therefore
S’ =10

Thent W = }* (10+10/10) =55min

Although thisisamost interesting outcome, it can be accepted that most services arefairly
regular which leads to amean waiting period equd to haf the duration of the interva period.

If the service frequency islow, the arrivd time of travellers a the stop will not be uniformly
divided, but will reflect the expected departure time of the bus or train. Observations have
shown that there is an upper limit to the mean waiting time of 5 to 10 minutes, say 7.5
minutes
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Waiting times at parallel lines

It is possible that a route between two nodes is serviced by one or morelines. Wegive an
example of the kind of reasoning that can be used to cdculate the mean waiting timesin that
case:

Casel

The amplest case is the one where the travel times between the two stops are equd for dl
lines. It isthen usud to set the average waiting time for dl lines equd to hdf of theinterva
time that gppertains to afrequency equd to the sum of the frequencies of the individud lines.
Passengers, for example for line 1, will on average not have waited longer than that, snce it
would otherwise have been better to take one of the other lines. However, be aware that
the approach above can lead to erroneous results if the lines depart at fixed intervals.

Case 2

Assume that the trave times between the stops differ for the different lines. A lower line
frequency, for example, could be compensated by a shorter travel time. It is easy to see
that in such cases frequencies can not be added up. Cdculating the mean waiting time can
now become very complicated.

Assumethat there aretwo lineswith t; < t,. Thetravdlerswill then show a preference for
line 1, unlesst, exceedst; only by asmdl amount. If t, < t; + %2 hy, sometravelerswill

takeline 2 dl the same. We could now use the following approach:

if t; = t, then add the frequencies, if t, > t; + %2 h; then do not add them at al and apply
aspecid cdculation in between these two cases.

One often refrains from this refinement and, in the case of unequal travel times between
nodes, caculates waiting times equd to haf the interva time of the individud lines.

8.2.3 Shortest route in a public transport network
The usud agorithms that are used to find a shortest route in aroad network require

adjustment when applied to a public trangport network. The option of transfers and
asociated waiting times cause anomadlies, asillugtrated in Figure 8-6.

B12 | B3
2] 3]

Transfer 5

A 10

(1]

Figure8-6 Problem finding shortest route by usual algoritmsin publ. tr netw. ’
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The journey from node 1 to 3 vialine B takes 12 + 3 = 15 minutes. Vialine A and B witha
transfer at node 2 it takes 10 + 5 + 3 = 18 minutes. Therefore, the shortest route from 1 to
3 fallowsline B, but the shortest route from 1 to 2 fallowsline A. Thismeansthd,
depending on the degtination, node 2 can be reached by various routes. Thisleadsto
problemsin terms of the classica dgorithms, because there is no unambiguous shortest route
tree from node 1. One solution would be, for example, to introduce additiond links after
which the usua shortest route agorithms could be applied. Another solutionisto develop
specific dgorithms for public trangport networks.

To give an ideaof an dgorithm that was specificaly developed for public trangport we will
describe a method that is known under the name Transitnet (described in Lamb en Havers
(1970)%.

The tranditnet dgorithm isillustrated by an example. See Figure 8-7. Say that we want to
find/determine the shortest route tree from node 1. For the sake of amplicity we will leave
the waiting times out of the condderation.

A6 [=1 B 1
D7 L] IZ‘
A 10 B 3
22—

Line A 1-2-5-6-7 A4
Line B 2-3-4-5
L!ne C 6-8-7
Line D 5-6-8 |__l—|

Figure 8-7 Examplefinding shortest routein publ tr network.?

Essentidly, the dgorithm works as follows:

Wefird find dl the nodes from the arting point that can be reached without transfers and
the time required for these journeys. Next we find al the nodes that can be reached by one
trandfer. If thetimeinvolved is smdler that that for a route we found earlier, we adjust the
time and route. The same procedure is repeated for two transfers, etc, until the identified
routes to al nodes no longer change.

In more detall:
Each node receives alabd of the form (L.K.T.) with the following meaning:

L the line lagt taken to reach this node
K the node where the trandfer to thisline is made
T the time needed to reach this node
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Moreover each node also hasa[+] or [-] Sgn that indicates if there are of lines emanating
from this node that till need to be investigated.

Knooppunten

Lijnen 1 2 3 4 5 6 7 8

vanuit

knoop Lijn
0.0.0 0.0.¥ 0.0.¥ 0.0.¥ 0.0.¥ 0.0.¥ 0.0.¥ 0.0.¥
+ - - - - - - -

1 A A.l4 A.1.14 A.1.20 A.1.32
0.0.0 A.l4 0.0.¥ 0.0.¥ A.1.14 A.1.20 A.1.32 0.0.¥
- + - - + + +

2 B B.2.7 B.2.10 B.2.11
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.¥
- - + + + + +

3 -
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.¥
- - + + + +

4 B
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.1.20 A.1.32 0.0.¥
- - - - + + +

5 A A.5.25 A5.21 A.5.17 A.5.29

D D.5.18 D.5.19

0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.5.17 A.5.29 D.5.19
- - - - + + +

6 C C.6.24 C.6.20

D D.6.24 D.6.18

0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.5.17 C.6.24 D.6.18
- - - - - - + +

7 A A.7.56 A.7.52 A.7.42 A.7.36
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.5.17 C.6.24 D.6.18
- - - - - - - +

8 C C.8.21 C.8.22
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18
- - - - - - +

7 A A.7.54 A.7.50 A.7.40 A.7.34
0.0.0 A.1.4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18
0.0.0 A.l4 B.2.7 B.2.10 B.2.11 A.5.17 C.8.22 D.6.18

Table8-4 Trandtnet algoritm.®

The dgorithm looks as follows:

Initigisation:

The gtarting node gets the label [0.0.0] and the indicator [+]. All other nodes get the label
[0.0.¥] and theindicator [-].

Repedat aslong asthere are [+] indicators.
Step 1:
Choose anode with a[+] indicator.
Investigate dl the lines that vidit this node, excepting the line by which one arrived a
thisnode. Thisyields new temporary labesfor al the nodes that can be reached
from this node without further trandfers.
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Set theindicator for thisnodeto [-].

Step 2:
Update the labels and indicators.

Compare the new labels gained in Sep 1 to the existing labels. The labels of the
nodes concerned are only adjusted and their indicators set a [+] if the new travel
timeis smdler than the travel time dready achieved. The labels and indicators of the
other nodes remain unchanged.

Table 8-4 shows the results when this dgorithm is gpplied to the example.

The last line of the table holds dl information necessary to recongtruct the shortest route
tree. Say that we are looking for the shortest route from node 1 to node 8. Node 8's label
(D.6.18) datestheat the earliest possible time we can arrive é thisnodeisvialine D from
node 6 and that the journey took 18 minutes. In turn, we can reach node 6 (according to
the lagt linein the table) in 17 minutes at the earliest and we can do so vialine A from node
5. Working back like thisto node 1, we find the shortest route given in Table 8-5.

Knooppunt Tijd Neem lijn
1 0 A

2 4 B

5 11 A

6 17 D

8 18

Table 8-5 Shortest route between two nodesin a public transport
network.

This example took no account of waiting times. The description of the dgorithm shows,
however, that the introduction of waiting times and the associated weighting of time
components will not be problemdtic.

8.2.4 Assignment models for public transport

The description of the assgnment agorithms for car traffic showed that the methods can be
divided into a number of categories:

All-or-nothing assgnment
Stochadtic assgnment
Equilibrium assgnment

Stochadtic equilibrium assignment

The same adgorithms can be adapted to be used for assgnment in public transport.

For the dl-or-nothing assgnment, the same applies as was dready pointed out for the
assignment of road traffic: the method can deliver reasonable results in a non-congested
network, when there are few dternative routes between an origin and a destination and
when these few dternative routes dso differ widdy in terms of travel impedance.

Asin acar network, severa routes can exist between two pointsin a public transport
network. A characterigtic of the public transport network isthat there are severd dternative
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travel routes coinciding in location. Train trave, for example, offers a choice between
expresstrains and locd trains. Bus networks dso offer different lines which partly follow the
same route.

Even when these dternative routes do not share the same travel impedance, travellers will
digribute themsdlves over these routes. This happens, just asisthe case in car networks,
because not every travdler isfully awvare of the travel impedancesin the network. Link
travel impedances, moreover, are judged differently by different travellers,

Stochastic assgnment models are used to find the digtribution of travellers over dternative
routes. Thiscan be doneintwo ways. Thefirst method digtributes the travelersin function
of the frequencies and/or travel times aong the dternative routes; the second uses smulation
(Monte Carlo method).

The first method has severad options: the passenger flows can be distributed proportiona to
the line frequencies, or they can be distributed proportiond to the e-powers of the weighted
travel- and waiting times (logit modd).

The second method is very asmilar to the smulation method used in the assgnment in car
networks. Drawing lotsis now used to find the waiting times and the choice of lineswith
equal length dong the same route. The shortest route tree is calculated after each draw of
lots.

The dl-or-nothing and stochastic assignments above take no account of changesin travel
impedances caused by network overload (congestion).

In the assgnment in car networks, the models that do take account of changesin travel
impedance of alink due to traffic congestion are called equilibrium models.

Congestion in public trangport networks can occur when the traveller demand exceeds the
cagpacity of the system. Besides the line frequency, capacity is particularly linked to vehicle
capacity. Thedgorithms for the equilibrium assgnment in car networks could, in principle,
be adapted for public trangport networks. This, however, ishardly ever done. Sincered
congestion of public transport networks rarely occurs, equilibrium assgnments are hardly
ever used.

8.2.5 Closing remarks
Some aspects of the route determination process have not been dedt with in this discussion.

Fird, thereistheinfluence of tariff structures. In choosing his route, the traveller does
not only look at the duration of the journey, but dso the costs.  Some transport
operators gpply tariff structures that are not directly in line with the trangportation effort.
There may not be any relationship between the tariff and the distance traveled, think of
season tickets for the entire network, for example. Such Stuations complicate the
goplication of conventiona assgnment techniques. Assgnment computer programmes
that can take complicated tariff structures into account do, however, exist.

Secondly, thereis the interaction between some forms of public transport and road
traffic. Busses, for example, that use the car network directly experience the influence
of any congestion on that road network. Here too, methods have been developed that
can incorporate this interaction.
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